第十三章 环和域
13.1 定义及简单性质
定义13.1.1 设R是一个非空集合,R中有两个代数运算,一个叫做加法并用加号“+”表示,另一个叫做乘法并用“o”表示。如果:
1. (R,+)是一个Abel群
2. (R,·)是一个半群
3. 乘法对加法满足左,右分配律。
则称代数系(R, +, o)为一个环。
在不引起误会的情况下,也简单地说R是一个环。在环R中,a与b的积a o b常简写成ab。
定义13.1.2 环(R, +, o)称为交换环或可换环,如果其中的乘法满足交换律,即。
- 例如:整数集合Z对通常数的加法和乘法构成一个环,称为整数环Z。整数环Z是一个交换环。
- 有理数集Q,实数集R,负数集C对数的加法和乘法也都分别构成交换环。
- 所有n阶矩阵M对矩阵的加法和乘法也构成一个非交换环,称为n阶矩阵环。
定义13.1.3 环(R, +, o)称为有限环,如果R是有限非空的集合。
- 对任何自然数n,都有恰好含有n个元素的交换环。
- 在环(R, +, o)中,假发的单位元用“0”表示,并称为R的零元(素)。R中任一元素a对加法的逆元素记为-a,并称为a的负(元素)。R中加法的逆元素称为减法,用“-”表示,a对加法的m次幂几位ma。
- 环中的乘法未必满足交换律,乘法也未必有单位元素。
环对加法构成一个Abel(交换)群,所以具有Abel群的一切性质。
定义13.1.4 设(R, +, o)是一个环,,如果存在一个元素
,使得ab=0, 则称a是R的一个左零因子,类似定义右零因子。如果a既是R的左零因子,又是R的右零因子,则称a为R的零因子。
定义13.1.5 没有非零的左零因子,也没有非零的右零因子的环称为无零因子环。可换无零因子环称为整环。
在无零因子环中,性质“由ab=0必能推出a=0或b=0”成立。
定理13.1.1 环R是无零因子环的充分必要条件是在R中乘法满足消去律。
定义13.1.6 一个环称为一个体如果它满足以下两个条件:
1. 至少含有非零元素
2. 非零元素的全体对乘法构成一个群。
定义13.1.7 可换体称为域。
- 在体和域中,乘法有单位元素,非零元素对乘法有逆元素。
- 显然,在体和域中没有零因子。
- 有理数环,实数环,复数环均是体,也是域。
定理13.1.2 至少有一个非零元素的无零因子有限环是体。
定义13.1.8 仅有有限个元素的体(域)称为有限体(域)。
定理13.1.3 环(R, +, o)是体的充分必要条件是,方程ax=b(xa=b)在R中有解。
定义13.1.9 环的非空子集S若对其中的加法和乘法也形成一个环,则S称为R的子环。
定义13.1.10 设(F, +, o)是体(域),E包含于F,如果E对F的加法和乘法也构成一个体(域),则称E为F的一个子体(子域)。
定理13.1.4
- 环R的非空子集S是R的子环的充分必要条件是:
1.
2.
- 体F的非空子集E是F的一个子体当且仅当以下三个条件同时成立:
1.
2.
3.
注意:一个环中未必有单位元素。如果一个环中有单位元素,则它的子环中也未必有单位元素。其次,有单位元的环,即使某个子环有单位元,则子环的单位元也未必是原环中的单位元。