近世代数 知识点整理5

第十三章 环和域

13.1 定义及简单性质

定义13.1.1 设R是一个非空集合,R中有两个代数运算,一个叫做加法并用加号“+”表示,另一个叫做乘法并用“o”表示。如果:

1. (R,+)是一个Abel群

2. (R,·)是一个半群

3. 乘法对加法满足左,右分配律

则称代数系(R, +, o)为一个环。

在不引起误会的情况下,也简单地说R是一个。在环R中,a与b的积a o b常简写成ab。

定义13.1.2 环(R, +, o)称为交换环或可换环,如果其中的乘法满足交换律,即\forall a,b\in R,~ab=ba

  • 例如:整数集合Z对通常数的加法和乘法构成一个环,称为整数环Z。整数环Z是一个交换环。
  • 有理数集Q,实数集R,负数集C对数的加法和乘法也都分别构成交换环。
  • 所有n阶矩阵M对矩阵的加法和乘法也构成一个非交换环,称为n阶矩阵环。

 定义13.1.3 环(R, +, o)称为有限环,如果R是有限非空的集合。

  • 对任何自然数n,都有恰好含有n个元素的交换环。
  • 在环(R, +, o)中,假发的单位元用“0”表示,并称为R的零元(素)。R中任一元素a对加法的逆元素记为-a,并称为a的负(元素)。R中加法的逆元素称为减法,用“-”表示,a对加法的m次幂几位ma。
  • 环中的乘法未必满足交换律,乘法也未必有单位元素。

环对加法构成一个Abel(交换)群,所以具有Abel群的一切性质。

定义13.1.4 设(R, +, o)是一个环,a\in R,如果存在一个元素b\in R,b\neq 0,使得ab=0, 则称a是R的一个左零因子,类似定义右零因子。如果a既是R的左零因子,又是R的右零因子,则称a为R的零因子

定义13.1.5 没有非零的左零因子,也没有非零的右零因子的环称为无零因子环可换无零因子环称为整环

在无零因子环中,性质“由ab=0必能推出a=0或b=0”成立。

定理13.1.1 环R是无零因子环的充分必要条件是在R中乘法满足消去律。

定义13.1.6 一个环称为一个如果它满足以下两个条件:

1. 至少含有非零元素

2. 非零元素的全体对乘法构成一个

定义13.1.7 可换体称为

  • 在体和域中,乘法有单位元素,非零元素对乘法有逆元素。
  • 显然,在体和域中没有零因子。
  • 有理数环,实数环,复数环均是体,也是域。

定理13.1.2 至少有一个非零元素无零因子有限环是体。

定义13.1.8 仅有有限个元素的体(域)称为有限体(域)。

定理13.1.3 环(R, +, o)是充分必要条件是R\setminus \left\{ 0\right\}\neq \phi, ~~~\forall a,b\in R\setminus \left\{ 0\right\},方程ax=b(xa=b)在R中有解。

定义13.1.9 环的非空子集S若对其中的加法和乘法形成一个环,则S称为R的子环

定义13.1.10 设(F, +, o)是体(域),E包含于F,如果E对F的加法和乘法也构成一个体(域),则称E为F的一个子体(子域)

定理13.1.4 

  • 环R的非空子集S是R的子环的充分必要条件是:

1. \forall a,b\in S, ab\in S

2. \forall a,b\in S, a-b\in S

  • 体F的非空子集E是F的一个子体当且仅当以下三个条件同时成立:

1. |E|\geqslant 2

2. \forall a,b\in E, a-b\in E

3. \forall a,b\in E, a\neq 0, b\neq 0, ab^{-1}\in E

注意:一个环中未必有单位元素。如果一个环中有单位元素,则它的子环中也未必有单位元素。其次,有单位元的环,即使某个子环有单位元,则子环的单位元也未必是原环中的单位元

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值