近世代数 知识点整理3

12.4 变换群

同构

定义:设(G1,o), (G2, *)是群。如果存在一个一一对用=应φ:G1->G2,使得任意a, b\in G1有:

\varphi (a\circ b) = \varphi (a) * \varphi (b),则称G1与G2同构

同构的两个群,只有记号不同,抽象性质相同。

同构满足等价的三个条件:反身性,对称性,传递性。

对称群

定义:设S是一个非空集合,从S到S的所有一一对应之集,记为Sym(S), 则Sym(S)对映射的合成构成一个群,称为S上的对称群。当S={1,2,..., n}时,Sym(S)=Sn。

Sym(S)上的任一子群称为S上的一个变换群。Sn的任一子群称为置换群

对称群的理解:

等边三角形进行六种旋转或翻转,仍能保持原形状和位置不变,而只有三个顶点的标号互换。这六个置换组成了一个群,就叫做等边三角形的对称群

对于正方形,一共有八种这种变换。这八个变换组成的一个群叫正方形的对称群

类似地,可以得到菱形的对称群乘法表

定理12.4.1【群的凯莱(Caley)同构定理】:任何一个群都同构于某个变换群。

证明:设(G, o)是一个群。对任意的a/in G, 令f(a):G->G, 使得任意x属于G,\forall x \in G, f_a(x) = a\circ x,则fa是G到G的一一对应。

设L(G) = {fa|fa: G->G, 对任意x in G, fa(x) = a o x, a\in G},则L(G)对映射的合成构成一个群。实际上,\forall f_a, f_b\in L(G), f_a\circ f_b(x) = f_a(f_b(x)) = f_a(bx) = abx = f_{ab}(x),所以fab = fa o fb,即f_a \circ f_b \in L(G)。因此,合成运算在L(G)封闭。显然,合成运算满足结合律。。。证明过长略。

推论12.4.1:任一n阶有限群同构于n次对称群Sn的一个n阶子群。亦即有限群同构于某个置换群。

Caley定理告诉我们,任何一个抽象的群都可以在变换群中找到其模型,或具体实例。而Caley定理的推论告诉我们,任何一个抽象的有限群都可以在对称群中找到一个具体实例,即再对称群的子集中找到实例。

定义12.4.3:设(G,o)是一个群,如果存在一个从G到G的一一对应,使得\forall a,b\in G\phi (a\circ b) = \phi(a)\circ \phi(b),则称φ是G的一个自同构

举例:

1. 自身映射I_G是一个自同构。

2. 设(G.o)是一个交换群,任意a属于G,令φ(a)=a^-1, 则φ是G的一个自同构。

3. 令M是一切可逆的nxn实矩阵之集,M_n对矩阵乘法形成群。令P是Mn中一个特定矩阵,则

\forall a\in M, \phi (A) = P^{-1}AP是M的一个自同构。

定理12.4.2:设G是一个群,G的所有自同构之集A(G)对映射的合成运算构成一个群,称为G的自同构群

定义12.4.4:群G的 由其元素a确定的自同构\phi (x) = axa^{-1},\forall x\in G称为G的内自同构,G的其他自同构称为外自同构。

定理12.4.3:群G的所有内自同构之集是G的自同构群的一个子群,称为内自同构群。

定义12.4.5:设(G,o)是一个群,在G上定义二元关系R如下:\forall a,b\in G,,  aRb当且仅当有G的内自同构φ使得b=φ(a)。称R为G的共轭关系,如果aRb,则称a与b共轭。

按共轭关系得到G的划分,即G的一个分类,每个类是一个等价类,称为共轭类。群G中的元素a所在的等价类就是G的子集。a = b|a与b共轭,b \in G。

12.5 循环群

定义12.5.1:群G称为循环群,如果G是由其中的某个元素a生成的,即(a)=G。

  • 如果循环群G是由a生成的,则\forall b\in G,存在一个整数n使得b=a^n.
  • 循环群必是交换群。

例如:

1. 整数加法群(z,+)是循环群,其生成元为“1”。

2. 整数的模n同余Z_n=\left\{[0],[1], [2],...,[n-1]\right\}构成一个阶为n的有限循环群,其生成元为[1]。

定理12.5.1:循环群是无穷循环群的充要条件为a的阶位无穷大。

定理12.5.2

1. 无穷循环群同构于整数加群,即如果不计同构,则无穷循环群只有一个,就是整数加群(Z,+).

2. 阶为n的有限循环群同构于模n同余类加群(Zn, +),即如果不计同构,n阶循环群只有一个,就是模n同余类加群。

定理12.5.3:设G=(a)是由a生成的循环群

1. 循环群的子群仍为循环群。

2. 如果G是无限循环群,则G的子群或为H0={e},或是某个具有最小正指数的元a^m生成的。于是对于m=1,2,3..., ,H_0 = \left\{e\right\}, H_m=(a^m)是G的所有子群。

3. 无穷循环集中,除了H0={e}之外,都是无穷循环子群,从而都同构于G。

4. 阶为n的循环群中,每个子群的阶整除n。对n的任意因子q,必有一个阶为q的子群。于是,G的全部子群为H_0 = \left\{e\right\},H_m= (a^m),m|n。每个子群Hm的阶为n/m。

定理12.5.4:设G是一个有限Abel群(即交换群,满足交换律),则G是循环群的充分必要条件是|G| = min\left\{n|\forall a\in G, a^n = e\right\}。即:G的阶数等于G中元素的阶数的最小值。

12.6 子群的陪集、拉格朗日定理

定义12.6.1 设H是群G的一个子群,a为G的任一元素。集合aH称为子群H的一个左陪集,Ha称为
H的一个右陪集。

定理12.6.1 设H是群G的子群,a\in G,则aH=H的充分必要条件是a\in H

定理12.6.2 设H是群G的子群,则\forall a,b\in G, aH=bH当且仅当a^{-1}b\in H

定理12.6.3 设H是G的子群,则\forall a,b\in G, aH=bH,aH\cap bH = \phi

定理12.5.4 设H是G的子群,\forall a,b\in G,有|aH|=|bH|

定理12.6.5 设H是群G的子群,则H的所有左陪集构成的集族是G的一个划分。

定理12.6.6 令H是群G的子群,S_l为H的所有左陪集构成的集族,S_r为H的所有左陪集构成的集族,S_r为H的所有右陪集构成的集族,则|S_l|=|S_r|

定义12.6.2 设H是群G的一个子群,如果H的所有不同的左陪集的个数为有限数j,则称j为H在G中的指数,记为j=[G:H],否则说H在G中的指数为无限大。

定理12.6.7 (拉格朗日)设G是一个阶为N的有限群,H是G的一个n阶子群,则:

N=n*[G:H],即:有限群的阶能被其每个子群的阶整除。

推论12.6.1 有限群中每个元素的阶能整除该有限群的阶。

推论12.6.2 如果群G的阶p是素数,则G是一个循环群。

推论12.6.3 设G是一个N阶群,则对G的每个元素a都有a^N=e。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值