数理逻辑与近世代数
文章平均质量分 74
wesker1121
纵使困顿难行,亦当砥砺奋进
展开
-
近世代数 知识点整理5
使得ab=0, 则称a是R的一个左零因子,类似定义右零因子。如果a既是R的左零因子,又是R的右零因子,则称a为R的。设R是一个非空集合,R中有两个代数运算,一个叫做加法并用加号“+”表示,另一个叫做乘法并用“o”表示。设(F, +, o)是体(域),E包含于F,如果E对F的加法和乘法也构成一个体(域),则称E为F的一个。环(R, +, o)称为交换环或可换环,如果其中的乘法满足交换律,即。其次,有单位元的环,即使某个子环有单位元,则子环的单位元也。环(R, +, o)称为有限环,如果R是有限非空的集合。原创 2023-10-16 21:35:30 · 689 阅读 · 0 评论 -
数理逻辑 1. 第二章 命题逻辑的基本概念
1. 原子命题时命题公式2. 若A,B时命题公式,则A,B与五个基本逻辑运算的组合均为命题公式3. 有限次使用1与2复合所得的结果为命题公式定义2.1.2 指派A(p1, p2, ..., pn)中的n个命题变元p1, p2, ..., pn的任意一种真值赋值称为指派,此时公式A有一个确定的真值。指派常用符号α表示。若对公式A的一个给定的指派α,使得A的真值为真,则记为α(A)=T,反之α(A)=F。若公式A对任一真值指派其真值均为真,则称为重言式/永真式。原创 2023-10-17 07:40:52 · 432 阅读 · 0 评论 -
近世代数 题目
设H是群G的一个子群,a为G的任一元素。集合aH称为子群H的一个左陪集,Ha称为H的一个右陪集。原创 2023-10-16 11:06:10 · 612 阅读 · 0 评论 -
近世代数 知识点整理4
群G的正规子群H的所有左陪集构成的集族,对群子集乘法构成的群称为G对H的商群,记为G/H。群G的子群H是G的正规子群 当且仅当 对G的任意内自同构φ有φ(H)=H。设H是G的正规子群,H的所有左陪集构成的集族,对群子集乘法形成一个群。设A,B是群G的子群,则AB是G的子群的充分必要条件是AB=BA。设H是群G的子群,如果对G的任意自同构φ有φ(H)设G是一个群,G的任意子集称为群子集。有aH=Ha,则称H是G的正规子群。于是,群G的特征子群是正规子群。其次,如果H是G的子群,则。H,则称H为G的特殊子群。原创 2023-10-16 15:54:10 · 340 阅读 · 0 评论 -
近世代数 知识点整理3
设(G1,o), (G2, *)是群。如果存在一个一一对用=应φ:G1->G2,使得任意a, b\in G1有:,则称G1与G2同构。同构的两个群,只有记号不同,抽象性质相同。同构满足等价的三个条件:反身性,对称性,传递性。原创 2023-09-10 20:54:07 · 2288 阅读 · 1 评论 -
近世代数 知识点整理2
结合律有左单位元e有左逆元素则称(G,o)为群。1. 若将上述条件中的左单位元和左逆同时改为右单位元和右逆,则该代数系是否仍为群?是。2. 若仅将左逆改为右逆,则该代数系是否仍为群?否。原创 2023-09-04 21:07:16 · 1791 阅读 · 1 评论 -
近世代数 知识点整理1
一个从集合X到集合Y的映射称为X到Y的一个一元代数运算。当X=Y时,称此一元代数运算为X上的一元代数运算。由p(1)是真的,得知m>1,又由p(m)不真,得P(m-1)为真。设X是一个集合,一个从XxX到X的一个映射φ称为X上的一个二元代数运算。,则a1,a2,...,an的成绩仅与这n个元素有关而与他们的次序无关。假设当n=k时成立,要推出n=k+1时成立。注:X上的一元二元代数运算对于运算是封闭的。设(S,o)是一个代数系,如果存在一个元素。)为一个(有一个代数运算的)代数系。证明同第一数学归纳法。原创 2023-08-31 19:41:35 · 350 阅读 · 0 评论