近世代数 题目

9.25 题目

1. 偶数阶群必含2阶元。

证明:

群中的每一个元素的阶均不为0 且单位元是其中惟一的阶为1的元素。因为任一阶大于2 的元素和它的逆元的阶相等。且当一个元素的阶大于2 时,其逆元和它本身不相等。故阶大于2 的元素是成对的。从而阶为1的元素与阶大于2 的元素个数之和是奇数。

因为该群的阶是偶数,从而它一定有阶为2 的元素。

知识点:

1. 元素的阶定义:a^k=e,则称k为a的阶。

可见e的阶为1;阶为2的元素,其逆元素是自身。

2. 证明:六阶群里必有一个三阶子群。

证明:

设G为6阶群,由拉格朗日定理的推论知,G中元素的阶必为6的因子,即1,2,3,6.

(1)若G中某个元素阶为6,不妨设|a|=6,可知G=<a>为6阶循环群,a^2就是它的一个3阶元,H=<a^2>就是它的一个三阶子群;

(2)若G中不含6阶元,则:采用反证法。若G中不含3阶元,则G中所有元素的阶均为1或者2。即所有元素x都满足x^2=e,所以x=x^(-1),于是任取x,y属于G,成立xy=(xy)^(-1)=y^(-1)x^(-1)=yx,故G为Abel群。取G中的非单位元a和b且a不等于b,容易验证H={e,a,b,ab}可构成一个群,它是G的子群,但它的阶为4,不能被6整除,与拉格朗日定理矛盾!故假设不成立,G中必含3阶元z,取<z>即为所求的三阶子群。

12.6 子群的陪集、拉格朗日定理

定义12.6.1:设H是群G的一个子群,a为G的任一元素。集合aH称为子群H的一个左陪集,Ha称为H的一个右陪集。

定理12.6.1:设H是群G的子群,a\in G,则aH=H的充要条件为a\in H

定理12.6.2:设H是群G的子群,则\forall a,b\in G,aH=bHaH\cap bH = \phi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值