吃瓜教程打卡task2

第3章-一元线性回归

参考视频:第3章-一元线性回归_哔哩哔哩_bilibili

在这里插入图片描述

1.最小二乘估计

基于均方误差最小化来进行模型求解的方法称为 “最小二乘法”

arg ⁡ min ⁡ ω , b E ( ω , b ) \mathop{\arg\min}\limits_{\omega, b} E_{(\omega, b)} ω,bargminE(ω,b)

以上公式的意思是求使得 E ( ω , b ) E_{(\omega, b)} E(ω,b) 最小的 ω \omega ω b b b

其中 E ( ω , b ) = ∑ i = 1 m ( y i − f ( x i ) ) 2 E_{(\omega, b)} = \sum_{i=1}^{m} (y_i - f(x_i))^2 E(ω,b)=i=1m(yif(xi))2

2.极大似然估计

极大似然估计是估计参数的统计方法(MLE),通过寻找使得观测数据出现的概率最大的参数值来对未知参数进行估计。

对于线性回归来讲,也可以假设其为以下模型

y = ω x + b + ϵ y = \omega x + b + \epsilon y=ωx+b+ϵ

其中 ϵ \epsilon ϵ 为不受控制的随机误差,通常假设其服从均值为 0 0 0 的正态分布 ϵ ∼ N ( 0 , σ 2 ) \epsilon \sim \mathcal{N}(0, \sigma^2) ϵN(0,σ2) (高斯提出的,也可以用中心极限定理解释),所以 ϵ \epsilon ϵ 的概率密度函数为

p ( ϵ ) = 1 2 π σ exp ⁡ ( − ϵ 2 2 σ 2 ) p(\epsilon) = \frac{1}{\sqrt{2 \pi} \sigma } \exp (-\frac{\epsilon ^ 2}{2\sigma^2}) p(ϵ)=2π σ1exp(2σ2ϵ2)

若将 ϵ \epsilon ϵ y − ( ω x + b ) y - (\omega x + b) y(ωx+b) 等价替换可得

p ( ϵ ) = 1 2 π σ exp ⁡ ( − ( y − ( ω x + b ) ) 2 2 σ 2 ) p(\epsilon) = \frac{1}{\sqrt{2 \pi} \sigma } \exp (-\frac{( y - (\omega x + b) )^ 2}{2\sigma^2}) p(ϵ)=2π σ1exp(2σ2(y(ωx+b))2)

可以看作 y ∼ N ( ω x + b , σ 2 ) y \sim \mathcal{N}(\omega x + b, \sigma^2) yN(ωx+b,σ2) ,下面便可以用极大似然估计来估计 ω \omega ω b b b 的值

L ( ω , b ) = ∏ i = 1 m p ( y i ) = ∏ i = 1 m 1 2 π σ exp ⁡ ( − ( y − ( ω x + b ) ) 2 2 σ 2 ) L(\omega, b) = \prod_{i=1}^{m} p({y_i}) = \prod_{i=1}^{m} \frac{1}{\sqrt{2 \pi} \sigma } \exp (-\frac{( y - (\omega x + b) )^ 2}{2\sigma^2}) L(ω,b)=i=1mp(yi)=i=1m2π σ1exp(2σ2(y(ωx+b))2)

ln ⁡ L ( ω , b ) = ∑ i = 1 m ln ⁡ 1 2 π σ exp ⁡ ( − ( y i − ( ω x i + b ) ) 2 2 σ 2 ) = ∑ i = 1 m ln ⁡ 1 2 π σ + ∑ i = 1 m ln ⁡ exp ⁡ ( − ( y i − ( ω x i + b ) ) 2 2 σ 2 ) \ln{L}(\omega, b) = \sum_{i=1}^{m} \ln{\frac{1}{\sqrt{2 \pi} \sigma } \exp (-\frac{( y_i - (\omega x_i + b) )^ 2}{2\sigma^2}) } = \sum_{i=1}^{m} \ln{\frac{1}{\sqrt{2 \pi} \sigma } + \sum_{i=1}^{m}{\ln\exp (-\frac{( y_i - (\omega x_i + b) )^ 2}{2\sigma^2}) }} lnL(ω,b)=i=1mln2π σ1exp(2σ2(yi(ωxi+b))2)=i=1mln2π σ1+i=1mlnexp(2σ2(yi(ωxi+b))2)

ln ⁡ L ( ω , b ) = m ln ⁡ 1 2 π σ − 1 2 σ 2 ∑ i = 1 m ( y i − ω x i − b ) 2 \ln{L}(\omega, b) = m \ln{ \frac{1}{\sqrt{2 \pi} \sigma }} - \frac{1}{2 \sigma^2} \sum_{i=1}^{m}{(y_i - \omega x_i - b)}^2 lnL(ω,b)=mln2π σ12σ21i=1m(yiωxib)2

去掉前面的常数和负号,相当于最小化后半部分式子

( ω ∗ , b ∗ = arg ⁡ max ⁡ ) ω , b ln ⁡ L ( ω , b ) = arg ⁡ min ⁡ ω , b ∑ i = 1 m ( y i − ω x i − b ) 2 (\omega^*, b^* = \mathop{\arg\max)} \limits_{\omega, b} \ln{L}(\omega, b) = \mathop{\arg\min} \limits_{\omega, b} \sum_{i=1}^m {(y_i - \omega x_i - b)}^2 (ω,b=ω,bargmax)lnL(ω,b)=ω,bargmini=1m(yiωxib)2

等价于最小二乘估计

第3章-多元线性回归

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值