AIGC的常见概念

生成式模型和判别模型

生成式模型:

模型根据数据集训练得出其所有特点,进而实现判断和生成同类实物的功能

判别模型:

模型根据数据集训练得出,数据间的最大差异性,进而实现判断的功能

Token

  • 定义:大模型处理文本的基本和计费单位
  • Token成本优化:
    • 不同问题采用不同大模型解决
    • 精简Prompt
    • 限制大模型思考方向 或 输出结构
    • 向量检索代替直接输入
    • 限制历史对话

RAG

前导:
  • LLM的生成机制:得出每个token作为下一个词的概率分布,然后选取下一个词,得出该词对应的向量表示,循环往复,因此具备随机性(导致幻觉)。
  • 向量与向量之间的相似度是依据余弦相似度进行计算的,即两个向量的夹角越大,余弦相似度越小,相似性越小
工作流程:
  • 存储阶段将文档切分为文本段,将每个文本段转为向量并保存到向量数据库
  • 检索阶段,将用户Prompt转为向量,去向量数据库中进行搜索得出相似的文本段(召回)并进行排序
问题:
  • 文档的处理和读取
  • 如何给文档进行合理的切分
  • 如何进行embedding、使用什么向量数据库
  • 用户的问题可能需要进行预处理,如重写、扩充、压缩
  • 检索

知识图谱

定义:
  • 存储实体-关系-实体的三元组关系,能减轻RAG产生的幻觉问题(比如:匹配的段落正好缺少某个关键信息)
与RAG的结合:
  • 一个prompt输入进来时,通过知识图谱检索相应的实体关系,对该prompt进行一个扩充,再交给RAG进行检索
  • 通过知识图谱获取信息后,可以继续抽取出一个子图,最后将结果进行合并
问题:
  • 如何构建一个知识图谱

  • 对合并后的内容做过滤

  • 如何让LLM更好的理解这种结构化信息,比如:定义一个结构化的prompt

    template = """
    你是一名产品描述专家。请根据以下信息生成一段描述:
        
    产品名称:{product_name}
    产品特性:
    - {feature1}
    - {feature2}
    - {feature3}
    
    产品描述:
    """
    

微调

定义:
  • 原有大模型在经过大量数据集的喂养后,内部的参数发生改变,参数可以理解为一个n行m列的矩阵
  • 与预训练的区别
    • 微调是在预训练模型的基础上实施的
    • 微调数据量小,但标注精确,针对特定任务,而预训练使用大规模的未标注数据,如互联网上的文本、图像等
    • 微调注重特定功能,预训练注重学习通用的特征

灾难性遗忘

定义
  • 当训练LLM的时候,LLM可能会遗忘之前掌握过的能力,即当LLM某个方面的能力增强时,必然会导致其他能力的削弱
解决
  • 如果该LLM只关注被增强的能力,可以不用管
  • 结合通用的数据和领域数据进行训练
  • 通过小的插件来增强某些能力,比如LoRA,只改变特定部分参数的微调
  • 通过一些限制,使改变后的参数与原来的参数的差异不要太大

提示工程 vs RAG vs 微调应用场景

  • 提示工程:把问题整理成一个更详细的方式传递给LLM
  • RAG:LLM缺乏相应领域知识
  • 微调:自身能力不足

TopP、TopK

  • TopP:只考虑累积概率大于p的token集合,累积概率是指:对每个token的出现概率按照降序排序,然后进行区间求和(求和的结果恰好大于等于p的为一个区间)

  • TopK:只采样作为下一个token的概率分布最高前k个token

RLHF(人类反馈强化学习)

  • 定义:AI生成一个回复,通过奖励模型判断这个回复的好坏

混合专家模型(MoE)

  • 定义:MOE 模型让多个 expert 共同决策,token 经 router 选择合适的 expert 输出结果,遵循稀疏(只激活对应的experts)、多样化(各expert专项能力不同)、合理分配原则

自注意力机制

  • 定义:Transformer 模型的核心是自注意力机制,其通过分析单词上下文确定含义,用加权平均更新向量。例如:对于一个句子中的一个单词,通过其他单词(包括自身)对该单词的影响分配一个权重,然后进行一个加权求和得到该单词新的向量(即得出该单词真正的含义)。

量化、蒸馏

  • 量化:量化是一种将高精度数值转换为离散值或低精度数值的过程
  • 蒸馏:将prompt同时交给大模型(teacher model)和想要训练的小模型(student model),然后希望他们的输出是匹配的,即小模型去模仿大模型,起到节省空间和加速模型的推理的作用。

模型的泛化能力

  • 定义:"举一反三"的能力,即让模型通过训练学出有价值的方法论和规律用来解决未知的问题。

幻觉

场景:
  • 上下文矛盾
  • 与prompt的要求不一致
  • 与事实矛盾
原因:
  • 数据质量差(信息不准确或缺乏多样性)
  • 大模型泛化能力差:在训练数据上表现得非常好,但在新的、未见过的数据上表现较差(过拟合)
  • token的生成本身是随机的:得出每个token作为下一个词的概率分布,然后选取下一个词,得出该词对应的向量表示,循环往复,因此具备随机性(导致幻觉)。
  • prompt不明确
改善:
  • RAG:经常用于垂直性领域
  • 模型微调
  • 改善Prompt:设定角色,链式思考模式,明确要求,规则约束
  • 工作流
  • 反馈机制
  • 模型分工
  • MCP和Function Call

工作流

工作流通过将复杂的任务分解成较小的步骤(节点)降低系统复杂度

多模态

多模态 AI 具备处理 文本、图片、视频、音频等多种输入 的能力,并且可以根据用户的需求,在不同模态之间进行转换和生成

Agent

Agent 是一个自主决策的智能体,能够感知环境、调用工具、规划任务,并自主执行(跟普通AI最本质的区别)操作以达成目标,

MCP与Function Call

  • MCP:统一大模型(LLM)与 MCP 工具之间的通信接口的协议。开发者基于这套协议去实现一些工具,MCP 工具只需实现MCP规定的某些标准接口,就可以独立于调用它的大模型而运行,并在自己的服务器上部署和维护,即MCP Server。这样MCP Client只需要做一些基本配置就能让大模型自己去调用对应的工具。
  • Function Call:这是LLM直接调用开发者预先定义好的本地函数。也就是说,LLM 会根据上下文生成特定格式的函数调用请求,直接触发本地代码执行,然后将结果返回给LLM。
  • 区别:MCP基于工具调用,将原本部署在LLM的工具将其部署在MCP服务器中,由LLM和MCP服务器交互,使得解耦、方便管理和安全(HTTP接口层面)。

技术可行性分析

  • 大模型擅长:

    • 理解能力/总结
    • 信息提取能力
    • 创意生成
  • 大模型不擅长:

    • 专业深度
    • 稳定/安全
    • 推理
### AIGC(生成式AI)基本概念 AIGC代表了通过人工智能自动生成内容的技术,这些技术能够创建文本、图像、音频以及其他形式的数据。随着近年来的发展,在软件开发和其他多个行业中,AIGC已经成为了重要的组成部分[^3]。 #### 主要特点 - **创造力**:可以模仿人类创造过程来生产新的数据样本。 - **效率提升**:减少了人工创作所需的时间成本。 - **广泛应用场景**:不仅限于娱乐行业,还包括医疗健康、金融分析等多个领域。 ### 常见面试问题解析 对于希望进入AIGC领域的求职者来说,准备一些典型的技术性问题是必要的。这些问题通常围绕着算法细节以及实际应用案例展开: 1. **Transformer架构** - Transformer是一种基于注意力机制的神经网络模型,它摒弃了传统的RNN/LSTM序列处理方法,转而采用并行化的方式来进行信息编码与解码操作。这种设计使得模型能够在更短的时间内训练更大规模的数据集,并且更好地捕捉远距离依赖关系[^4]。 2. **Batch Normalization vs Layer Normalization** - 批量标准化(BatchNorm)主要用于计算机视觉任务中,通过对每一层的小批量输入做规范化处理以稳定梯度传播;而层标准化(LayerNorm),则更适合自然语言处理任务,因为它可以直接作用于单一样本的不同特征维度上,从而保持句子内部的一致性。 3. **Flash Attention** - Flash Attention 是一种优化后的自我注意计算方案,旨在提高大规模预训练语言模型中的内存利用率和运行速度。相比于标准实现,该版本可以在不损失精度的前提下大幅减少显存占用并加快推理时间。 ```python import torch.nn as nn class CustomModel(nn.Module): def __init__(self, d_model=512, nhead=8): super(CustomModel, self).__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead) def forward(self, src): output, _ = self.self_attn(src, src, src) return output ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾露z

谢谢侬!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值