异常检测
Anomaly Detection
工业异常检测在业界和学界都一直是热门,近期其更是迎来了全新突破:与大模型相结合!让异常检测变得更快更准更简单!比如模型AnomalyGPT,它克服了以往的局限,能够让大模型充分理解工业场景图像。工业异常检测取得了许多显著的进展,出现了许多值得一看的突破性成果。沃的顶会简单整理了各大顶会(CVPR、ICLR等)中【异常检测】相关论文,共8篇,希望能给想发顶会的同学提供一些思路。
无监督
1、一个简单的图像异常检测和定位网络
论文题目:CVPR2023 | SimpleNet: A Simple Network for Image Anomaly Detection and Localization
内容简介:论文提出了一个简单且应用友好的网络(称为SimpleNet)来检测和定位异常。SimpleNet由四个部分组成:(1)生成局部特征的预训练特征提取器,(2)将局部特征转移到目标域的浅特征适配器,(3)通过向正常特征添加高斯噪声来伪造异常特征的简单异常特征生成器,以及(4)区分异常特征和正常特征的二进制异常鉴别器。在推理过程中,异常特征生成器将被丢弃。论文的方法基于三个直觉。首先,将预训练的特征转换为面向目标的特征有助于避免域偏差。其次,在特征空间中生成合成异常更为有效,因为缺陷在图像空间中可能没有太多的共性。第三,简单的鉴别器效率高、实用