无监督/框架/小样本,工业异常检测最新思路!

 异常检测

Anomaly Detection

工业异常检测在业界和学界都一直是热门,近期其更是迎来了全新突破:与大模型相结合!让异常检测变得更快更准更简单!比如模型AnomalyGPT,它克服了以往的局限,能够让大模型充分理解工业场景图像。工业异常检测取得了许多显著的进展,出现了许多值得一看的突破性成果。沃的顶会简单整理了各大顶会(CVPR、ICLR等)【异常检测】相关论文,共8篇,希望能给想发顶会的同学提供一些思路。

无监督

1、一个简单的图像异常检测和定位网络

论文题目:CVPR2023 | SimpleNet: A Simple Network for Image Anomaly Detection and Localization

内容简介:论文提出了一个简单且应用友好的网络(称为SimpleNet)来检测和定位异常。SimpleNet由四个部分组成:(1)生成局部特征的预训练特征提取器,(2)将局部特征转移到目标域的浅特征适配器,(3)通过向正常特征添加高斯噪声来伪造异常特征的简单异常特征生成器,以及(4)区分异常特征和正常特征的二进制异常鉴别器。在推理过程中,异常特征生成器将被丢弃。论文的方法基于三个直觉。首先,将预训练的特征转换为面向目标的特征有助于避免域偏差。其次,在特征空间中生成合成异常更为有效,因为缺陷在图像空间中可能没有太多的共性。第三,简单的鉴别器效率高、实用。尽管简单,SimpleNet在定量和定性上都优于以前的方法。

图片

2、基于全频域通道选择的的无监督异常检测

论文题目:TIP 2023 | Omni-frequency Channel-selection Representations for Unsupervised Anomaly Detection

内容简介:本文着重改进基于重构的方法,从频率的角度处理感知异常检测任务(sensory anomaly detection),提出了一种新的全频率通道选择重构网络(Omni-frequency Channel-selection Reconstruc-tion,OCR-GAN)。同时也提出了频率解耦(Frequency Decoupling,FD)模块来获取图像的不同频带信息,实现多分支的全频重建。还提出了通道选择(Channel Selection,CS)模块来实现多支路之间的全频率交互和不同信道特征的自适应选择。此外,大量的实验证明了提出方法的优越性,例如,研究团队在没有额外训练数据的MVTec AD数据集上实现了新的SOTA 98.3检测AUROC,相较于没有额外训练数据的基于重构方法获得了+18.3↑提升,同时相较于SOTA方法获得了+0.3↑提升。

图片

需要的同学添加公众号【沃的顶会】 回复 检测8 即可全部领取

自监督

1、创新的自监督异常检测框架

论文题目:CVPR2024 | RealNet: A Feature Selection Network with Realistic Synthetic Anomaly for Anomaly Detection

内容简介:论文提出了一个名为RealNet的特征重构框架,集成了异常感知特征选择(AFS)和重构残差选择(RRS)。RealNet充分利用了大规模预训练CNN网络的区分能力,同时减少特征冗余和预训练偏差,增强了异常检测性能并有效控制了计算需求。对于不同的类别,RealNet选择了不同的预训练特征子集进行异常检测,确保了最佳的异常检测性能,同时灵活控制了模型的大小。此外,RealNet通过自适应丢弃缺乏异常信息的重构残差,有效减少了漏检,并显著提高了异常区域的召回率。

图片

2、工业3D异常检测自监督特征适应框架

论文题目:Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection

内容简介:本文提出了LSFA框架,这是一个创新且有效的用于3D异常检测的框架。LSFA通过在模态之间建立局部到全局的对应关系作为监督来适应预训练特征,在主流基准测试中展现了显著的优势,并取得了新的最优成绩(SOTA)。同时,本文也引入了Intra-modal Feature Compactness optimization(IFC)方法,通过动态更新的内存库从局部和原型的角度改善特征的紧凑性。这有助于提高对异常模式的敏感性。此外,本文还提出了Cross-modal Local-to-global Consistency alignment(CLC)方法,利用多粒度对比信号减轻跨模态不一致性。这有助于解决跨模态特征错位的问题。

图片

需要的同学添加公众号【沃的顶会】 回复 检测8 即可全部领取

小样本

1、工业视觉小样本异常检测新方法: Graphcore

论文题目:Pushing the Limits of Fewshot Anomaly Detection in Industry Vision: Graphcore

内容简介:在小样本异常检测(FSAD)领域,高效的视觉特征对基于记忆库M的方法起着至关重要的作用。然而,这些方法没有考虑视觉特征与其旋转视觉特征之间的关系,极大地限制了异常检测性能。为了深入探索,本文揭示了旋转不变特征特性对基于工业的FSAD有重大影响。具体地,利用FSAD中的图表示,提出一种新的视觉等距不变特征(VIIF)作为异常度量特征。因此,VIIF可以鲁棒地提高异常判别能力,并可以进一步大幅降低存储在M中的冗余特征的规模。此外,本文还提出了一种基于VIIFs的GraphCore模型,可以快速实现无监督FSAD训练,提高异常检测的性能。实验结果表明,GraphCore在MVTec AD上平均AUC提高了5.8%、4.1%、3.4%和1.6%,在MPDD上平均AUC提高了25.5%、22.0%、16.9%和14.1%。

图片

图片

2、基于模型无关元学习的小样本轴承异常检测

论文题目:Few-Shot Bearing Anomaly Detection Based on Model-Agnostic Meta-Learning

内容简介:在本文中,作者提出了一种基于与模型无关的元学习(MAML)的轴承异常检测的小样本学习方法,其目标是使用有限的数据训练有效的故障分类器。此外,它可以利用训练数据学习更有效地识别新的故障场景。对新的人工故障的泛化案例研究表明,所提出的方法比基于Siamese网络的基准研究的整体准确度高25%。最后,该算法使用人工损伤数据识别真实轴承损伤的案例研究进一步验证了MAML泛化能力的稳健性。

图片

  • 18
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值