论文阅读--ActionCLIP

原来的动作识别问题在于标注太难太贵,将动作表示为短语的latent space太大

本文的贡献:(1)将CLIP的image encoder换成video encoder,方法与CLIP4Clip几乎一样

(2)CLIP的ground truth来自于文本-图像对,几乎是独立的,所以只有对角线上是正样本。但这里的text是动作标签,当batch比较大的时候,同一行或一列会出现多个正样本,这时不再是一个one-hot的问题,所以把cross entropy换成KL divergence

(b)对文本做前缀、完型、后缀的prompt

(c)把时间和空间上的token放一起丢给网络学习,也就是加上position embedding

(d)shift是在特征图上做各种各样的移动,达到更强的建模能力,但又不增加计算量。视频领域需要时序上的改变,19年tsm的论文正式将shift应用到视频,从此大火。每个ViT block之间加一个tsm的module,增强模型持续建模的能力,又不额外引入参数 

(efg)与CLIP4Clip一样,得到很多单帧表示后需要融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值