论文阅读--Orient Anything

通过渲染3D模型来学习不同方向下物体的外观,并从单张和自由视角的图像中估计物体方向

1. 数据生成:基于 3D 渲染构建大规模方向标注数据集

- 数据来源:

使用 Objaverse 数据库中的高质量 3D 模型,进行筛选和预处理。

- 筛选规范:

仅保留处于规范姿态的模型,过滤掉倾斜模型(通过 PCA 判断)。

- 方向标注流程:
  • 渲染模型在 x/-x/y/-y 四个方向和俯视角;

  • 利用先进视觉语言模型(如 Gemini-1.5-pro)判断哪个角度是“正面”;

  • 结合对称性分析避免错误(通过图像结构相似性计算);

  • 对于对称物体,标记为“无方向”。

- 渲染过程:
  • 使用球坐标(θ 极角,φ 方位角,δ 相机旋转角)定义方向;

  • 每个模型从随机角度渲染 40 张图像,图像大小 512x512;

  • 共构建包含200万张带方向注释图像的数据集。


2. 学习目标:方向概率分布拟合(核心创新)

背景问题:

直接使用 L2 回归预测角度难以收敛,且分类忽略了相邻角度间的关系。

核心方法:

将角度预测转化为概率分布拟合问题,分别建模三种角度(极角θ、方位角φ、旋转角δ):

  • 将 360° 或 180° 区间离散为每度一类;

  • 构建高斯分布(极角)或环形高斯分布(方位角、旋转角)作为目标;

  • 使用交叉熵损失函数对分布进行拟合训练。

推理策略:
  • 输出三个分布;

  • 使用最大概率对应角度作为预测值;

  • 若模型判断该物体为“无方向”,则不输出具体角度。


3. 合成到真实迁移策略(Synthetic-to-Real Transfer)

为解决模型从渲染图像迁移到真实图像的困难,作者引入两种策略:

(1)模型初始化:
  • 采用 DINOv2(在真实图像上预训练,感知精细)作为视觉编码器初始化;

  • 明显优于 MAE、CLIP 等方案。

(2)数据增强:
  • 使用随机裁剪模拟物体遮挡;

  • 在推理时,使用分割掩码裁剪目标,减少干扰;

  • 增强合成图像与真实图像之间的风格一致性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值