labelme、labelimg的安装及使用(含格式转换:json转png)

本文介绍了图像标注工具labelme和labelimg的基本功能、安装步骤,以及如何在Anaconda环境中创建虚拟环境。还详细说明了json转png的过程和标注时的快捷操作,为机器学习项目的数据预处理提供指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🌞欢迎莅临我的个人主页👈🏻这里是我专注于深度学习领域、用心分享知识精粹与智慧火花的独特角落!🍉

🌈如果大家喜欢文章,欢迎:关注🍷+点赞👍🏻+评论✍🏻+收藏🌟,如有错误敬请指正!🪐

🍓“请不要相信胜利就像山坡上的蒲公英一样唾手可得,但是请相信生活中总有美好值得我们全力以赴,哪怕粉身碎骨!”🌹

目录

labelme、labelimg简要介绍 

labelme

labelimg

Anaconda虚拟环境

labelme的安装

labelme的使用

labelimg的安装

labelimg的使用

json转png

标注快捷操作


labelme、labelimg简要介绍 

        labelme和labelimg都是图像标注工具,它们在机器学习和计算机视觉领域的数据准备阶段扮演着重要的角色。这些工具的主要目的是帮助用户为图像数据集创建标签,这些标签随后可以用于训练机器学习模型,以识别和理解图像中的对象、场景和活动等。

labelme

        labelme是一个开源的图像标注工具,它支持多种类型的标注,包括矩形框、多边形、点、线和圆形等。它提供了一个用户友好的界面,允许用户通过简单的点击和拖动来创建标注。Labelme支持导出多种格式的标注文件,如JSON、XML等,这些文件可以被不同的机器学习框架所使用。

labelimg

        labelimg是另一个广泛使用的图像标注工具,它同样提供了矩形框、多边形、点和线的标注功能。labelimg的用户界面相对简洁,易于上手,同时也支持导出多种格式的标注文件,如XML、CSV等。

Anaconda虚拟环境

在进行 labelme 和 labelimg 安装前需要先创建Anaconda虚拟环境。

详情请参考:深度学习环境搭建详解

在电脑搜索栏中搜索Anacodna Prompt打开Anaconda

最开始界面如下,base是基础环境

(base) C:\Users\ZhuanZ>

创建环境:conda create -n labelme python=3.7.16

其中labelme是需要创建的环境名称,pytho=3.7.16是该环境的python版本,可根据自己的需求调整版本号。

激活环境:activate labelme

退出环境:deactivate

labelme的安装

activate labelme 激活 labelme 的虚拟环境

成功显示以下界面,其中(labelme)是激活的对应环境名称

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

30天

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值