复杂度(complexity)介绍

目录

1.算法效率

1.1如何衡量一个算法的好坏

1.2算法的复杂度

2.时间复杂度

2.1时间复杂度的概念

2.3大O的渐进表示法

Eg1

Eg2

Eg3

Eg4

Eg5

Eg6

Eg7

Eg8

Eg9

3.空间复杂度

eg1

eg2

eg3

eg4

4.常见的时间复杂度

5.OJ(online judge)例题

方案1

方案2(不通过)

方案3

1.算法效率

1.1如何衡量一个算法的好坏

1.1如何衡量一个算法的好坏呢?比如对于以下Fib数列:

long long Fib(int N)
{
	if (N < 3)
	{
		return 1;
	}

    return Fib(N - 1) + Fib(N - 2);
}

斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那如何衡量其好与坏呢?

1.2算法的复杂度

算法(algorithm)在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源。因此衡量一个算法的好坏,一般是由时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎,但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

tips:摩尔定律是intel创始人之一戈登·摩尔的经验之谈,其核心内容为:集成电路上可以容纳的晶体管数目在大约每经过18个月便会增加一倍。                                                                                                                                                                                                                                                

2.时间复杂度

2.1时间复杂度的概念

时间复杂度(time complexity)的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上来说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比,算法中的基本操作的执行次数,为算法的时间复杂度。

即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

 请计算一下Func1中++count语句总共执行了多少次

void Func(int N)
{
	int count = 0;
	for (int i = 0; i < N; ++i)
	{
		for (int j = 0; j < N; ++j)
		{
			++count;
		}
	}

	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}

	int M = 10;
	while (M--)
	{
		++count;
	}
}

F(N)= N*N + 2*N + 10 准确的时间复杂度函数式

函数式计算的算法运行准确次数

但准确的时间复杂度函数式,不方便在算法之间进行比较

2.3大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:

1.用常数1取代运行时间中的所有加法常数。

2.在修改后的运行次数的函数中,只保留最高阶项。

3.如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

随着N越大,后两项对结果影响几乎可以忽略不计

大概估算,通俗点说,时间复杂度估算就是算他是属于哪个量级的算法

使用大O阶的渐进表示法后,Func1的时间复杂度为:

O(N)=N*N

Eg1

计算Func2的时间复杂度

void Func2(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}

	int M = 10;
	while (M--)
	{
		++count;
	}

	printf("%d\n", count);
}

F(N)=2*N+10

O(N)=2*N

Eg2

计算Func3的时间复杂度

void Func3(int N, int M)
{
	int count = 0;
	for (int k = 0; k < M; ++k)
	{
		++count;
	}

	for (int k = 0; k < N; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

不知道M和N的大小

O(N+M)

N远大于M

O(N)

M远大于N

O(M)

M和N一样大

O(N)或O(M)

Eg3

计算Func4的时间复杂度

void Func4(int N)
{
	int count = 0;
	for (int k = 0; k < 100; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

答案是O(1),它不是表示1次,而是表示常数次

Eg4

计算strchr的时间复杂度

字符串数组中查找一个字符

helloworld\0

const char* strchr(const char* str, int character)
{
	while (*str)
	{
		if (*str == character)
		{
			return str;
		}
		else
		{
			++str;
		}
		return NULL;
	}
}

另外有些算法的时间复杂度存在最好、平均和最坏的情况

最坏情况:任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数

最好情况:任意输入规模的最小运行次数(下界)

最好情况:一次找到

最坏情况:N次找到

平均情况:N/2次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

Eg5

计算BubbleSort的时间复杂度

void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}

		if (exchange == 0)
			break;
	}
}

最坏情况:

   准确的:

    F(N) = N-1+N-2+N-3+......+2+1

            =((N-1+1)*(N-1))/2

    O(N^2)

    最好的情况是多少:O(N)

Eg6

计算BinarySearch的时间复杂度

int BinarySearch(int* a, int n, int x)
{
	assert(a);

	int begin = 0;
	int end = n - 1;
	//[begin,end]:begin和end是左闭右闭区间,因此有=号
	while (begin <= end)
	{
		int mid = begin + ((end - begin) >> 1);
		if (a[mid] < x)
			begin = mid + 1;
		else if (a[mid] > x)
			end = mid - 1;
		else
			return mid;
	}

	return -1;
}

N/2/2/2/2/2....../2 = 1

折半了多少次就除了多少个2

除了多少个2就找了多少次!

假设折半查找了x次

2^x = N

x = \log_{2}N

最好:O(1)

最坏:O(\log_{2}N)

因为要在文本中写对数不好写,而时间复杂度中,\log_{2}N经常出现,所以我们会把他简写成logN

什么情况最坏?--找不到

Eg7

消失的数字

数组nums包含从0到n的所有整数,但其中缺了一个,请编写代码找出那个缺失的整数,你有办法在O(n)时间内完成吗?

示例1:

输入:[3,0,1]

输出:2

code

int missingNumber(int* nums, int numsSize)
{
	int x = 0;
	for (int i = 0; i < numsSize; ++i)
	{
		x ^= nums[i];
	}
	for (int j = 0; j < numsSize + 1; ++j)
	{
		x ^= j;
	}

	return x;
}

 

 

Eg8

 计算递归Fac的时间复杂度

long long Fac(size_t N)
{
	if (0 == N)
		return 1;

	return Fac(N - 1) * N;
}

 O(N)

Eg9

计算斐波那契递归Fib的时间复杂度

long long Fib(size_t N)
{
	if (N < 3)
		return 3;

	return Fib(N - 1) + Fib(N - 2);
}

 O(2^N)

 N=40时,2^40 = 1024*1024*1024*1024 = 1万亿次左右 

3.空间复杂度

空间复杂度(space complexity)也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度

空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。

空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定

eg1

BubbleSort的时间复杂度是O(1)

函数中只开辟了end,i,exchange,Swap四个临时变量,为常数个。空间不会积累,出函数销毁后,进函数再创建用的是同一块空间,但时间会积累。

eg2

计算Fibonacci1的空间复杂度

返回斐波那契数列的前n项

long long* Fibnoacc1(size_t n)
{
	if (n == 0)
	   return NULL;

long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n; ++i)
{
	fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
}

return fibArray;
}

O(N)

malloc开辟n+1个long long大小

eg3

计算阶乘递归Fac的空间复杂度

O(N)                                Fac(N) 

eg4

计算Fib的空间复杂度

O(N)

一共创建了N个左右的空间

4.常见的时间复杂度

 常见的时间复杂度如下

按升序排\log_{2}N 在第二,越往下算法越差

5.OJ(online judge)例题

旋转数组(leetcode)

给你一个数组,将数组中的元素向右旋转k个位置,其中k是非负数。

进阶:

1.尽可能想出更多的解决方案,至少有三种不同的方法可以解决这个问题。

2.你可以使用空间复杂度O(1)的原地算法解决这个问题吗?

方案1

每个旋转1个,旋转k次

空间复杂度为O(1)

时间复杂度为O(N*K)

输入:nums = [1,2,3,4,5,6,7], k = 3

输出:[5,6,7,1,2,3,4]

解释:

向右旋转1次:[7,1,2,3,4,5,6]

向右旋转2次:[6,7,1,2,3,4,5]

向右旋转3次:[5,6,7,1,2,3,4]

方案2(不通过)

方案3

void reverse(int* nums, int left, int right)
{
	while (left < right)
	{
		int tmp = a[left];
		a[left] = a[right];
		a[right] = tmp;
		++left;
		--right;
	}
}

void rotate(int* num, int numSize, int k)
{
    k %= numsSize;
	reverse(nums, numsSize - k, numsSize - 1);
	reverse(nums, 0, numsSize - k - 1);
	reverse(nums, 0, numsSize - 1);
}

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值