计算机专业毕设选题推荐-基于python+Django协同过滤的音乐推荐系统【源码+文档+讲解】

💖🔥作者主页毕设木哥
精彩专栏推荐订阅:在 下方专栏👇🏻👇🏻👇🏻👇🏻

实战项目

一、协同过滤的音乐推荐系统-项目介绍

随着互联网技术和数字音乐产业的快速发展,音乐流媒体平台已成为人们获取音乐的主要渠道。然而,面对海量的音乐资源,用户往往难以高效地发现符合自己口味的新曲目。这一现状凸显了个性化音乐推荐系统的必要性。一个优秀的推荐系统不仅能够提升用户体验,帮助用户发掘喜爱的音乐,还能够为音乐平台带来更高的用户粘性和商业价值。因此,开发一个高效准确的音乐推荐系统具有重要的实际意义。
目前,许多音乐平台已经采用了各种推荐算法,但仍存在一些问题。例如,基于内容的推荐方法往往难以捕捉用户的潜在兴趣;单一的协同过滤算法可能会导致推荐结果的同质化,无法满足用户多样化的音乐需求;而一些复杂的深度学习模型虽然效果良好,但往往需要大量的计算资源和训练数据。这些问题限制了现有推荐系统的效果,亟需一种能够平衡效率和准确性的解决方案。
本课题旨在基于Python开发一个协同过滤的音乐推荐系统,通过分析用户的历史行为数据,发现用户之间的相似性,从而为用户推荐可能喜欢的音乐。该系统将结合多种协同过滤技术,如基于用户的协同过滤和基于物品的协同过滤,以提高推荐的准确性和多样性。研究的目的是构建一个既能够准确把握用户偏好,又能在计算效率和资源消耗方面保持优势的推荐系统。这不仅有助于改善用户的音乐发现体验,也为音乐推荐领域的技术创新提供了新的思路,具有重要的理论和实践意义。

二、协同过滤的音乐推荐系统-视频展示

计算机专业毕设选题推荐-基于python+Django协同过滤的音乐推荐系统

三、协同过滤的音乐推荐系统-开发环境

  • 开发语言:Python
  • 数据库:MySQL
  • 系统架构:B/S
  • 后端:Django
  • 前端:vue
  • 工具:PyCharm

四、协同过滤的音乐推荐系统-项目展示

页面展示:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

五、协同过滤的音乐推荐系统-代码展示

from django.shortcuts import render, get_object_or_404, redirect
from django.views import View
from django.contrib.auth.mixins import LoginRequiredMixin
from django.db.models import Q
from .models import Song, Playlist, UserProfile
from .forms import SongForm, PlaylistForm
from .recommendation import get_recommendations

class HomeView(View):
    def get(self, request):
        recent_songs = Song.objects.order_by('-created_at')[:10]
        context = {'recent_songs': recent_songs}
        if request.user.is_authenticated:
            recommendations = get_recommendations(request.user)
            context['recommendations'] = recommendations
        return render(request, 'music_app/home.html', context)

class SongListView(View):
    def get(self, request):
        query = request.GET.get('q')
        if query:
            songs = Song.objects.filter(
                Q(title__icontains=query) | Q(artist__icontains=query)
            )
        else:
            songs = Song.objects.all()
        return render(request, 'music_app/song_list.html', {'songs': songs})

class SongDetailView(View):
    def get(self, request, pk):
        song = get_object_or_404(Song, pk=pk)
        return render(request, 'music_app/song_detail.html', {'song': song})

class AddSongView(LoginRequiredMixin, View):
    def get(self, request):
        form = SongForm()
        return render(request, 'music_app/add_song.html', {'form': form})

    def post(self, request):
        form = SongForm(request.POST, request.FILES)
        if form.is_valid():
            song = form.save(commit=False)
            song.uploaded_by = request.user
            song.save()
            return redirect('song_detail', pk=song.pk)
        return render(request, 'music_app/add_song.html', {'form': form})

class PlaylistListView(LoginRequiredMixin, View):
    def get(self, request):
        playlists = Playlist.objects.filter(user=request.user)
        return render(request, 'music_app/playlist_list.html', {'playlists': playlists})

class PlaylistDetailView(LoginRequiredMixin, View):
    def get(self, request, pk):
        playlist = get_object_or_404(Playlist, pk=pk, user=request.user)
        return render(request, 'music_app/playlist_detail.html', {'playlist': playlist})

class CreatePlaylistView(LoginRequiredMixin, View):
    def get(self, request):
        form = PlaylistForm()
        return render(request, 'music_app/create_playlist.html', {'form': form})

    def post(self, request):
        form = PlaylistForm(request.POST)
        if form.is_valid():
            playlist = form.save(commit=False)
            playlist.user = request.user
            playlist.save()
            return redirect('playlist_detail', pk=playlist.pk)
        return render(request, 'music_app/create_playlist.html', {'form': form})

class AddToPlaylistView(LoginRequiredMixin, View):
    def post(self, request, song_pk):
        song = get_object_or_404(Song, pk=song_pk)
        playlist_pk = request.POST.get('playlist')
        playlist = get_object_or_404(Playlist, pk=playlist_pk, user=request.user)
        playlist.songs.add(song)
        return redirect('song_detail', pk=song_pk)

class UserProfileView(LoginRequiredMixin, View):
    def get(self, request):
        user_profile, created = UserProfile.objects.get_or_create(user=request.user)
        listened_songs = user_profile.listened_songs.all()
        return render(request, 'music_app/user_profile.html', {
            'user_profile': user_profile,
            'listened_songs': listened_songs
        })

class MarkAsListenedView(LoginRequiredMixin, View):
    def post(self, request, song_pk):
        song = get_object_or_404(Song, pk=song_pk)
        user_profile, created = UserProfile.objects.get_or_create(user=request.user)
        user_profile.listened_songs.add(song)
        return redirect('song_detail', pk=song_pk)

class RecommendationView(LoginRequiredMixin, View):
    def get(self, request):
        recommendations = get_recommendations(request.user)
        return render(request, 'music_app/recommendations.html', {'recommendations': recommendations})

六、协同过滤的音乐推荐系统-项目文档展示

在这里插入图片描述

七、协同过滤的音乐推荐系统-项目总结

本研究成功开发了一个基于Python的协同过滤音乐推荐系统,通过分析用户历史行为数据,有效解决了海量音乐资源中个性化推荐的问题。系统采用了基于用户和基于物品的协同过滤算法相结合的方法,不仅提高了推荐的准确性,还增强了推荐结果的多样性。研究结果表明,该系统能够有效捕捉用户的音乐偏好,在保证计算效率的同时,显著提升了用户的音乐发现体验。本课题的开发思路强调了算法效率与推荐质量的平衡,通过Python实现了灵活且易于扩展的系统架构,为音乐推荐领域提供了新的技术方案。然而,本研究仍存在一些局限性,如冷启动问题和对新用户的适应性等,这些都是未来研究需要进一步探讨的方向。未来的工作可以考虑引入深度学习技术,如神经协同过滤或注意力机制,以进一步提升系统的性能。此外,结合音频特征分析和自然语言处理技术,探索跨模态的推荐方法,也是一个极具潜力的研究方向。总的来说,本课题为音乐推荐系统的发展提供了有价值的见解和实践经验,为未来更加智能和个性化的音乐服务奠定了基础。

大家点赞、收藏、关注、有问题都可留言交流👇🏻👇🏻👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值