书生浦语--趣味大模型Demo

1.Demo实战任务内容

2.部署 InternLM2-Chat-1.8B 模型进行智能对话

2.1配置环境

2.1.1创建开发机 

创建自己的开发机并且取名字,这里取位lee,使用Cuda11.7-conda 镜像,调整配置为10% A100 * 1,随后进入开发机。

 

2.1.2配置环境

进入terminal(控制台)输入以下命令

studio-conda -o internlm-base -t demo
# 与 studio-conda 等效的配置方案
# conda create -n demo python==3.10 -y
# conda activate demo
# conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia

进入conda环境

conda activate demo

安装环境所需要的包

pip install huggingface-hub==0.17.3
pip install transformers==4.34 
pip install psutil==5.9.8
pip install accelerate==0.24.1
pip install streamlit==1.32.2 
pip install matplotlib==3.8.3 
pip install modelscope==1.9.5
pip install sentencepiece==0.1.99

安装截图如下:

2.2下载 InternLM2-Chat-1.8B 模型

2.2.1按照路径创建文件夹
mkdir -p /root/demo
touch /root/demo/cli_demo.py
touch /root/demo/download_mini.py
cd /root/demo

进入demo文件,打开/root/demo/download_mini.py文件,复制以下代码进入文件中

import os
from modelscope.hub.snapshot_download import snapshot_download

# 创建保存模型目录
os.system("mkdir /root/models")

# save_dir是模型保存到本地的目录
save_dir="/root/models"

snapshot_download("Shanghai_AI_Laboratory/internlm2-chat-1_8b", 
                  cache_dir=save_dir, 
                  revision='v1.1.0')

2.2.2执行命令,下载模型参数文件:
python /root/demo/download_mini.py

运行效果:

2.3 运行 cli_demo

2.3.1打开/root/demo/cli_demo.py 文件

复制以下代码:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM


model_name_or_path = "/root/models/Shanghai_AI_Laboratory/internlm2-chat-1_8b"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='cuda:0')
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='cuda:0')
model = model.eval()

system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""

messages = [(system_prompt, '')]

print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")

while True:
    input_text = input("\nUser  >>> ")
    input_text = input_text.replace(' ', '')
    if input_text == "exit":
        break

    length = 0
    for response, _ in model.stream_chat(tokenizer, input_text, messages):
        if response is not None:
            print(response[length:], flush=True, end="")
            length = len(response)
2.3.2进入环境并且运行程序
conda activate demo
python /root/demo/cli_demo.py

效果如下:

2.3.3 测试模型

输入“请创作一个 300 字的小故事”

模型可以跑出,完成!

实战:部署实战营优秀作品 八戒-Chat-1.8B 模型

3.1配置环境
conda activate demo
3.2使用 git 命令来获得仓库内的 Demo 文件
cd /root/
git clone https://gitee.com/InternLM/Tutorial -b camp2
# git clone https://github.com/InternLM/Tutorial -b camp2
cd /root/Tutorial

效果如图:

3.3 下载运行demo
python /root/Tutorial/helloworld/bajie_download.py

随后输入:

streamlit run /root/Tutorial/helloworld/bajie_chat.py --server.address 127.0.0.1 --server.port 6006

3.4端口环境配置本地powershell

查询自己的端口,下图所示这里为41045,并且记住这个数据,将下列代码改为自己的端口

​ # 从本地使用 ssh 连接 studio 端口 
 # 将下方端口号 38374 替换成自己的端口号 
  ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 41045

查看自己的密码,并且复制粘贴到password后,并且回车

3.5运行成果

3.5.1打开http://127.0.0.1:6006 ,等待模型加载成功

输入测试“请自我介绍”得到输出成果

模型跑出,完成训练!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值