音频&深度学习Lesson17_神经网络的深度学习

文章展示了一个使用numpy构建的深度神经网络(DeepNet)类,它包含初始化权重、计算方法,并通过一个例子展示了如何处理输入数据并产生输出。网络结构由输入层、隐藏层和输出层组成,隐藏层的数量和节点可变,使用了Sigmoid激活函数。
摘要由CSDN通过智能技术生成
import numpy as np


class DeepNet:
    def __init__(self,in_num,out_num,hidden_num):
        self.model = [in_num]+hidden_num+[out_num]
        self.weight =[]
        self.layer_num = len(self.model)
        for i in range(self.layer_num -1):
            current_weight = np.random.rand(self.model[i],self.model[i+1])
            self.weight.append(current_weight)
        self.bias = 0


    def calculate(self,data):
        for w in self.weight:
            y = np.dot(data,w)
            y = 1 / (1 +np.exp(-y))
            data = y
        return y

in_num = 3
out_num = 1
hidden_num = [3,2,4]
mynn = DeepNet(in_num=in_num,out_num=out_num,hidden_num=hidden_num)
input = np.array([1,2,3])
output = mynn.calculate(input)
print(output)







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值