目录
一、算法概述
1.1算法简介
朴素贝叶斯(Naive Bayes)算法是一种基于贝叶斯定理与特征条件独立假设的分类方法。该算法在文本分类、垃圾邮件过滤、情感分析等领域有着广泛的应用。
1.2先验概率、条件概率和后验概率
先验概率:
在未对模型进行训练前,P(cj)被称为cj的先验概率,
用样例中属于cj的样例数|cj|比上总样例数|D|来近似,即:
条件概率:
已知两个独立事件A和B,事件B发生的前提下,事件A发生的概率可以表示为P(A|B),即:
其中,事件A与事件B同时发生,表示为P(A,B)或P(AB)。
贝叶斯公式:
后验概率:
记P(A)为先验概率,即在B事件发生之前,对A事件概率的一个判断;
P ( A ∣ B ) 称为后验概率,即在B事件发生之后,对A事件概率的重新评估;
二、算法实现过程
2.1定义加载数据集函数
#dataSet:训练集 testSet:待测集 labels:样本所具有的特征的名称
def loadDataSet():
dataSet=[['乌黑', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑', 0.774, 0.376, '好瓜'],
['乌黑', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', 0.634, 0.264, '好瓜'],
['青绿', '稍蜷', '浊响', '稍糊', '凹陷', '硬滑', 0.639, 0.161, '坏瓜'],
['浅白', '稍蜷', '沉闷', '稍糊', '凹陷', '硬滑', 0.657, 0.198, '坏瓜'],
['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '软粘', 0.360, 0.370, '坏瓜'],
['浅白', '蜷缩', '浊响', '模糊', '平坦', '硬滑', 0.593, 0.042, '坏瓜'],
['青绿', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑', 0.608, 0.318, '好瓜'],
['浅白', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', 0.556, 0.215, '好瓜'],
['青绿', '稍蜷', '浊响', '清晰', '稍凹', '软粘', 0.403, 0.237, '好瓜'],
['乌黑', '稍蜷', '浊响', '稍糊', '稍凹', '软粘', 0.481, 0.149, '好瓜'],
['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '硬滑', 0.437, 0.211, '好瓜'],
['乌黑', '稍蜷', '沉闷', '稍糊', '稍凹', '硬滑', 0.666, 0.091, '坏瓜'],
['青绿', '硬挺', '清脆', '清晰', '平坦', '软粘', 0.243, 0.267, '坏瓜'],
['浅白', '硬挺', '清脆', '模糊', '平坦', '硬滑', 0.245, 0.057, '坏瓜'],
['浅白', '蜷缩', '浊响', '模糊', '平坦', '软粘', 0.343, 0.099, '坏瓜'],
['青绿', '蜷缩', '沉闷', '稍糊', '稍凹', '硬滑', 0.719, 0.103, '坏瓜']]
testSet= ['乌黑', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑', 0.774, 0.376] # 待测集
labels = ['色泽', '根蒂', '敲声', '纹理', '脐部', '触感', '密度', '含糖率'] # 特征
return dataSet, testSet, labels
2.2计算先验概率
计算先验概率,统计数据集中好瓜和坏瓜的个数并计算好瓜和坏瓜的先验概率。
#计算先验概率P(c)
def prior():
dataSet = loadDataSet() # 载入数据集
countG = 0 # 初始化好瓜数量
countB = 0 # 初始化坏瓜数量
countAll = len(dataSet)
for item in dataSet: # 统计好瓜个数
if item[-1] == "好瓜":
countG += 1
for item in dataSet: # 统计坏瓜个数
if item[-1] == "坏瓜":
countB += 1
# 计算先验概率P(c)
P_G = round(countG/countAll, 3)
P_B = round(countB/countAll, 3)
return P_G,P_B
2.3计算条件概率
计算条件概率P(|c)
对于离散属性:
对于连续属性:
2.3.1离散属性的条件概率
通过将训练集中的样本按属性归类,便于计算离散属性的条件概率,代码中通过index实现遍历待测样本特征值的索引位置对应训练样本的索引位置。
#计算离散属性的条件概率P(xi|c)
def P(index, cla):
dataSet, testSet, labels = loadDataSet() # 载入数据集
countG = 0 # 初始化好瓜数量
countB = 0 # 初始化坏瓜数量
for item in dataSet: # 统计好瓜个数
if item[-1] == "好瓜":
countG += 1
for item in dataSet: # 统计坏瓜个数
if item[-1] == "坏瓜":
countB += 1
lst = [item for item in dataSet if (item[-1] == cla) & (item[index] == testSet[index])] # lst为cla类中第index个属性上取值为xi的样本组成的集合
P = round(len(lst)/(countG if cla=="好瓜" else countB), 3) # 计算条件概率
return P
2.3.2连续属性的均值和标准差
根据连续属性的条件概率公式,需提前计算均值和标准差。传入将要计算的均值和标准差的属性名称,使用列表推导式从dataSet中筛选出类别为cla且特征为feature的数据,将这些数据组成一个列表lst。使用numpy库中的mean和std函数计算均值和标准差,其结果保留三位小数。
#计算(不同类别中指定连续特征的)均值、标准差
def mean_std(feature, cla):#feature:传入指定将要计算其均值的标准差的特征名称,cla:计算指定分类cla下该特征的条件概率
dataSet, testSet, labels = loadDataSet()
lst = [item[labels.index(feature)] for item in dataSet if item[-1]==cla] #类别为cla中指定特征feature组成的列表
mean = round(np.mean(lst), 3) # 均值
std = round(np.std(lst), 3) # 标准差
return mean, std
2.3.3连续属性的条件概率
因为西瓜的密度和含糖率属于连续属性,需要通过计算密度和含糖率的均值及标准差,可以进一步计算出好瓜和坏瓜在密度、含糖率属性下的条件概率。
#计算连续属性的条件概率p(xi|c)
def p():
dataSet, testSet, labels = loadDataSet() # 载入数据集
denG_mean, denG_std = mean_std("密度", "好瓜") # 好瓜密度的均值、标准差
denB_mean, denB_std = mean_std("密度", "坏瓜") # 坏瓜密度的均值、标准差
sugG_mean, sugG_std = mean_std("含糖率", "好瓜") # 好瓜含糖率的均值、标准差
sugB_mean, sugB_std = mean_std("含糖率", "坏瓜") # 坏瓜含糖率的均值、标准差
# p(密度|好瓜)
p_density_G = (1/(math.sqrt(2*math.pi)*denG_std))*np.exp(-(((testSet[labels.index("密度")]-denG_mean)**2)/(2*(denG_std**2))))
p_density_G = round(p_density_G, 3)
# p(密度|坏瓜)
p_density_B = (1/(math.sqrt(2*math.pi)*denB_std))*np.exp(-(((testSet[labels.index("密度")]-denB_mean)**2)/(2*(denB_std**2))))
p_density_B = round(p_density_B, 3)
# p(含糖率|好瓜)
p_sugar_G = (1/(math.sqrt(2*math.pi)*sugG_std))*np.exp(-(((testSet[labels.index("含糖率")]-sugG_mean)**2)/(2*(sugG_std**2))))
p_sugar_G = round(p_sugar_G, 3)
# p(含糖率|坏瓜)
p_sugar_B = (1/(math.sqrt(2*math.pi)*sugB_std))*np.exp(-(((testSet[labels.index("含糖率")]-sugB_mean)**2)/(2*(sugB_std**2))))
p_sugar_B = round(p_sugar_B, 3)
return p_density_G, p_density_B, p_sugar_G, p_sugar_B
2.4计算后验概率
通过离散属性和连续属性的条件概率和好瓜、坏瓜的先验概率可以计算出后验概率并返回后验概率的值。
#预测后验概率P(c|xi)
def bayes():
#计算类先验概率
P_G, P_B = prior()
#计算离散属性的条件概率
P0_G = P(0, "好瓜") # P(乌黑|好瓜)
P0_B = P(0, "坏瓜") # P(乌黑|坏瓜)
P1_G = P(1, "好瓜") # P(蜷缩|好瓜)
P1_B = P(1, "坏瓜") # P(蜷缩|坏瓜)
P2_G = P(2, "好瓜") # P(沉闷|好瓜)
P2_B = P(2, "坏瓜") # P(沉闷|坏瓜)
P3_G = P(3, "好瓜") # P(清晰|好瓜)
P3_B = P(3, "坏瓜") # P(清晰|坏瓜)
P4_G = P(4, "好瓜") # P(凹陷|好瓜)
P4_B = P(4, "坏瓜") # P(凹陷|坏瓜)
P5_G = P(5, "好瓜") # P(硬滑|好瓜)
P5_B = P(5, "坏瓜") # P(硬滑|坏瓜)
#计算连续属性的条件概率
p_density_G, p_density_B, p_sugar_G, p_sugar_B = p()
#计算后验概率
isGood = P_G * P0_G * P1_G * P2_G * P3_G * P4_G * P5_G * p_density_G * p_sugar_G # 计算是好瓜的后验概率
isBad = P_B * P0_B * P1_B * P2_B * P3_B * P4_B * P5_B * p_density_B * p_sugar_B # 计算是坏瓜的后验概率
return isGood,isBad
2.5主函数
通过main函数实现调用,实现朴素贝叶斯分类器对待测集的训练,输出预测结果。
if __name__=='__main__':
dataSet, testSet, labels = loadDataSet()
testSet = [testSet]
df = pd.DataFrame(testSet, columns=labels, index=[1])
print(f"待测集:\n{df}")
print("先验概率:")
P_G, P_B = prior()
print("P(好瓜) =", P_G)
print("P(坏瓜) =", P_B)
isGood, isBad = bayes()
print("后验概率:")
print(f"P(好瓜|xi) = {isGood}")
print(f"P(坏瓜|xi) = {isBad}")
print("预测结果 : 好瓜" if (isGood > isBad) else "预测结果 : 坏瓜")
三、代码运行及结果分析
3.1总体代码
import numpy as np
import math
import pandas as pd
#加载数据集函数
#dataSet:训练集 testSet:待测集 labels:样本所具有的特征的名称
def loadDataSet():
dataSet=[['乌黑', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑', 0.774, 0.376, '好瓜'],
['乌黑', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', 0.634, 0.264, '好瓜'],
['青绿', '稍蜷', '浊响', '稍糊', '凹陷', '硬滑', 0.639, 0.161, '坏瓜'],
['浅白', '稍蜷', '沉闷', '稍糊', '凹陷', '硬滑', 0.657, 0.198, '坏瓜'],
['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '软粘', 0.360, 0.370, '坏瓜'],
['浅白', '蜷缩', '浊响', '模糊', '平坦', '硬滑', 0.593, 0.042, '坏瓜'],
['青绿', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑', 0.608, 0.318, '好瓜'],
['浅白', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', 0.556, 0.215, '好瓜'],
['青绿', '稍蜷', '浊响', '清晰', '稍凹', '软粘', 0.403, 0.237, '好瓜'],
['乌黑', '稍蜷', '浊响', '稍糊', '稍凹', '软粘', 0.481, 0.149, '好瓜'],
['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '硬滑', 0.437, 0.211, '好瓜'],
['乌黑', '稍蜷', '沉闷', '稍糊', '稍凹', '硬滑', 0.666, 0.091, '坏瓜'],
['青绿', '硬挺', '清脆', '清晰', '平坦', '软粘', 0.243, 0.267, '坏瓜'],
['浅白', '硬挺', '清脆', '模糊', '平坦', '硬滑', 0.245, 0.057, '坏瓜'],
['浅白', '蜷缩', '浊响', '模糊', '平坦', '软粘', 0.343, 0.099, '坏瓜'],
['青绿', '蜷缩', '沉闷', '稍糊', '稍凹', '硬滑', 0.719, 0.103, '坏瓜']]
testSet= ['乌黑', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑', 0.774, 0.376] # 待测集
labels = ['色泽', '根蒂', '敲声', '纹理', '脐部', '触感', '密度', '含糖率'] # 特征
return dataSet, testSet, labels
#计算先验概率P(c)
def prior():
dataSet = loadDataSet()[0] # 载入数据集
countG = 0 # 初始化好瓜=0
countB = 0 # 初始化坏瓜=0
countAll = len(dataSet)
for item in dataSet: # 好瓜个数
if item[-1] == "好瓜":
countG += 1
for item in dataSet: # 坏瓜个数
if item[-1] == "坏瓜":
countB += 1
# 计算先验概率P(c)
P_G = round(countG/countAll, 3)
P_B = round(countB/countAll, 3)
return P_G,P_B
#计算离散属性的条件概率P(xi|c)
def P(index, cla):
dataSet, testSet, labels = loadDataSet() # 载入数据集
countG = 0 # 初始化好瓜数量
countB = 0 # 初始化坏瓜数量
for item in dataSet: # 统计好瓜个数
if item[-1] == "好瓜":
countG += 1
for item in dataSet: # 统计坏瓜个数
if item[-1] == "坏瓜":
countB += 1
lst = [item for item in dataSet if (item[-1] == cla) & (item[index] == testSet[index])] # lst为cla类中第index个属性上取值为xi的样本组成的集合
P = round(len(lst)/(countG if cla=="好瓜" else countB), 3) # 计算条件概率
return P
#计算(不同类别中指定连续特征的)均值、标准差
def mean_std(feature, cla):#feature:传入指定将要计算其均值的标准差的特征名称,cla:计算指定分类cla下该特征的条件概率
dataSet, testSet, labels = loadDataSet()
lst = [item[labels.index(feature)] for item in dataSet if item[-1]==cla] #类别为cla中指定特征feature组成的列表
mean = round(np.mean(lst), 3) # 均值
std = round(np.std(lst), 3) # 标准差
return mean, std
#计算连续属性的条件概率p(xi|c)
def p():
dataSet, testSet, labels = loadDataSet() # 载入数据集
denG_mean, denG_std = mean_std("密度", "好瓜") # 好瓜密度的均值、标准差
denB_mean, denB_std = mean_std("密度", "坏瓜") # 坏瓜密度的均值、标准差
sugG_mean, sugG_std = mean_std("含糖率", "好瓜") # 好瓜含糖率的均值、标准差
sugB_mean, sugB_std = mean_std("含糖率", "坏瓜") # 坏瓜含糖率的均值、标准差
# p(密度|好瓜)
p_density_G = (1/(math.sqrt(2*math.pi)*denG_std))*np.exp(-(((testSet[labels.index("密度")]-denG_mean)**2)/(2*(denG_std**2))))
p_density_G = round(p_density_G, 3)
# p(密度|坏瓜)
p_density_B = (1/(math.sqrt(2*math.pi)*denB_std))*np.exp(-(((testSet[labels.index("密度")]-denB_mean)**2)/(2*(denB_std**2))))
p_density_B = round(p_density_B, 3)
# p(含糖率|好瓜)
p_sugar_G = (1/(math.sqrt(2*math.pi)*sugG_std))*np.exp(-(((testSet[labels.index("含糖率")]-sugG_mean)**2)/(2*(sugG_std**2))))
p_sugar_G = round(p_sugar_G, 3)
# p(含糖率|坏瓜)
p_sugar_B = (1/(math.sqrt(2*math.pi)*sugB_std))*np.exp(-(((testSet[labels.index("含糖率")]-sugB_mean)**2)/(2*(sugB_std**2))))
p_sugar_B = round(p_sugar_B, 3)
return p_density_G, p_density_B, p_sugar_G, p_sugar_B
#预测后验概率P(c|xi)
def bayes():
#计算类先验概率
P_G, P_B = prior()
#计算离散属性的条件概率
P0_G = P(0, "好瓜") # P(乌黑|好瓜)
P0_B = P(0, "坏瓜") # P(乌黑|坏瓜)
P1_G = P(1, "好瓜") # P(蜷缩|好瓜)
P1_B = P(1, "坏瓜") # P(蜷缩|坏瓜)
P2_G = P(2, "好瓜") # P(沉闷|好瓜)
P2_B = P(2, "坏瓜") # P(沉闷|坏瓜)
P3_G = P(3, "好瓜") # P(清晰|好瓜)
P3_B = P(3, "坏瓜") # P(清晰|坏瓜)
P4_G = P(4, "好瓜") # P(凹陷|好瓜)
P4_B = P(4, "坏瓜") # P(凹陷|坏瓜)
P5_G = P(5, "好瓜") # P(硬滑|好瓜)
P5_B = P(5, "坏瓜") # P(硬滑|坏瓜)
#计算连续属性的条件概率
p_density_G, p_density_B, p_sugar_G, p_sugar_B = p()
#计算后验概率
isGood = P_G * P0_G * P1_G * P2_G * P3_G * P4_G * P5_G * p_density_G * p_sugar_G # 计算是好瓜的后验概率
isBad = P_B * P0_B * P1_B * P2_B * P3_B * P4_B * P5_B * p_density_B * p_sugar_B # 计算是坏瓜的后验概率
return isGood,isBad
if __name__=='__main__':
dataSet, testSet, labels = loadDataSet()
testSet = [testSet]
df = pd.DataFrame(testSet, columns=labels, index=[1])
print(f"待测集:\n{df}")
print("先验概率:")
P_G, P_B = prior()
print("P(好瓜) =", P_G)
print("P(坏瓜) =", P_B)
isGood, isBad = bayes()
print("后验概率:")
print(f"P(好瓜|xi) = {isGood}")
print(f"P(坏瓜|xi) = {isBad}")
print("预测结果 : 好瓜" if (isGood > isBad) else "预测结果 : 坏瓜")
3.2运行结果测试
3.3实验总结
在本次贝叶斯分类器实验中,我深入了解了贝叶斯分类器的基本原理和实现方法。实验主要围绕贝叶斯公式和贝叶斯决策理论展开,通过实际的数据集进行训练和分类,验证了贝叶斯分类器的有效性。