根据题意,我们首先可以想到用一个整形变量ans储存分钟数,再用一个二维字符数组map(简称m)储存整张地图。
但是问题来了,map需要开多大呢?首先这是一个边长为10的地图,所以至少要开10* 10,但是为了更好的判断越界情况,我们可以开一个12* 12的数组,然后把边框全部变为'* ',这样相当于将边框变为了障碍物,判断更加方便。
但是我们要考虑一个问题,我们不能每次移动都遍历一遍数组,太耗时间了,所以我们可以用两个整型数组储存奶牛和农夫的信息(x,y坐标以及方向),每次移动时只需调整信息即可。既然题中说初始方向为正北,我们就可以将初始方向北设为0(初始),顺时针依次将东、南、西设为1,2,3。
本题的难点是如何判断无法抓到这一情况,容易想到只要判断一下在抓捕过程中是否存在两次人与牛处于同样的状态的时候,原理是人和牛的运动方式是一样的,如果有一前一后两种状态存在的话,后一种状态再走几格又会回到原来的状态(形成了一个环)。
如何判断有两次一样的状态呢?
给每个状态设定一个值,如果这个值之前已经出现过,说明他们陷入了循环,不能相遇。每个状态都要保存农夫和牛的x、y坐标(各10种可能)和方向(各4种可能),其中为了避免重复,可以将特征值设为
farmer.x+farmer.y∗10+cow.x∗100+cow.y∗1000+farmer.facing∗10000+cow.facing∗40000
可以用bool数组来实现以O(1)的复杂度来查询该值是否已经出现。
#include<bits/stdc++.h>
using namespace std;
char m[12][12];//地图
int f[3],c[3],ans,tdz;//农夫,奶牛,秒数,特征值
bool zt[160005];//记录特征值是否出现
void move(int x,int y,int mi,int h){//移动函数
if (mi==0){
if (m[x-1][y]=='*') if (h==0) f[0]=1; else c[0]=1;
else if (h==0) f[1]--; else c[1]--;
}else if (mi==1){
if (m[x][y+1]=='*') if (h==0) f[0]=2; else c[0]=2;
else if (h==0) f[2]++; else c[2]++;
}else if (mi==2){
if (m[x+1][y]=='*') if (h==0) f[0]=3; else c[0]=3;
else if (h==0) f[1]++; else c[1]++;
}else{
if (m[x][y-1]=='*') if (h==0) f[0]=0; else c[0]=0;
else if (h==0) f[2]--; else c[2]--;
}
}
bool pd(){ //判断循环终止条件:如果奶牛坐标与农夫坐标相等,则他们重叠,返回0,退出循环
if (f[1]==c[1]&&f[2]==c[2]) return 0;
else return 1;
}
int main(){
for (int i=0;i<=11;i++) m[i][0]='*',m[i][11]='*';
for (int i=1;i<=11;i++) m[0][i]='*',m[11][i]='*';
for (int i=1;i<=10;i++){
for (int j=1;j<=10;j++){
cin>>m[i][j];
if (m[i][j]=='F') f[1]=i,f[2]=j;
if (m[i][j]=='C') c[1]=i,c[2]=j;
}
}
while (pd()){//模拟每秒
tdz=f[1]+f[2]*10+c[1]*100+c[2]*1000+f[0]*10000+c[0]*40000;
if (zt[tdz]){//死循环了就输出0并结束程序
cout<<0<<endl;
return 0;
}
zt[tdz]=1;//标记
move(f[1],f[2],f[0],0);
move(c[1],c[2],c[0],1);//依次移动农夫和奶牛
ans++;//记录秒数
}
cout<<ans<<endl;//输出
return 0;
}