【RL论文精读】Synthesize Policies forTransfer and Adaptation across Tasks and Environments

这篇论文讨论了一种在不同任务和环境中进行转移学习的方法,特别是在强化学习领域。论文的主要目标是通过学习环境和任务的嵌入表示来生成新的策略,从而在新环境和新任务上快速适应并进行知识转移。

论文的核心内容包括以下几个方面:

  1. 问题定义:强化学习中的代理通常学习的是特定环境和任务的最佳策略,但当环境或任务发生变化时,代理的表现会迅速下降。为了解决这一问题,论文提出了一个新模型,能够在看到的环境和任务组合(即训练集)上学习策略,并将其推广到未见的组合上(即测试集)。

  2. 方法:提出了一种新的组合神经网络架构,该架构通过环境和任务的嵌入来生成策略。具体地,模型通过双线性映射将环境和任务的嵌入结合,生成相应的策略。模型同时还使用了一种解耦学习的目标,使得环境和任务的嵌入具有独特性,并且可以有效地用于策略的组合。

  3. 实验:在GRIDWORLD和THOR环境中进行了实验,结果表明该方法能够在只看到了40%的训练数据的情况下,在所有任务和环境组合上取得较高的成功率。此外,模型在未见环境和任务上的泛化性能也比其他基线方法表现得更好。

  4. 主要贡献:论文的主要贡献是提出了一个新颖的策略合成方法,并通过实验验证了其在强化学习任务中的有效性,尤其是在转移学习场景中的表现优越。

Introduction

在论文的引言中,作者定义了三个不同的设置(setting)来描述强化学习中的转移学习问题。具体而言,这些设置定义了代理(agent)在不同环境和任务组合中的学习和适应能力,特别是针对未见过的环境或任务的转移学习。以下是三个设置的解释:
在这里插入图片描述

  1. Setting 1: 已知环境和任务组合的学习和适应

    • 在这种设置下,代理在之前已经单独接触过某些环境和任务,但并没有同时见过这些环境和任务的组合。代理的目标是在尽量少的环境-任务组合(即稀疏的训练集)上进行学习,并能快速适应新的环境-任务组合。
    • 例如,一个家务机器人可能在不同的房子里完成任务,也可能在同一个房子里学习新的任务,但并没有同时在特定房子中完成特定任务的经验。
  2. Setting 2: 单独转移到未见过的环境或任务

    • 在这种设置下,代理可能会遇到从未见过的环境,或是从未见过的任务,但不是同时面对两者。代理的目标是能够在未见过的环境中完成与之前相同的任务,或在相同的环境中完成新的任务。
    • 例如,一个机器人可能需要从一个家庭转移到另一个家庭,完成类似的清洁任务;或者它在同一个家庭中学习新的任务,如整理物品。
  3. Setting 3: 同时转移到未见过的环境和任务

    • 这是最具挑战性的场景,代理之前既没有见过这种环境,也没有见过这种任务。代理的目标是在非常有限的数据下(例如一个示范),通过从先前的学习中转移知识,快速适应新的环境和任务。
    • 例如,一个家务机器人可能被送到一个从未见过的家庭,并且需要完成从未执行过的新任务。在这种情况下,代理可能会通过仅仅观察一次示范来学习如何适应新的环境和任务。

这些设置逐渐增加了难度,从第一种情况(代理有部分经验)到第三种情况(代理完全没有见过的组合),为强化学习中的转移学习问题提供了清晰的研究框架。

Related Work

在论文的“Related Work”(相关工作)部分,作者回顾了与其提出的方法相关的几类研究工作,特别是在多任务学习和强化学习中的转移学习领域。具体来说,作者讨论了以下几个关键领域的相关研究:

  1. 多任务学习与强化学习中的转移学习

    • 这类研究探索如何在多任务环境下进行学习,并将学习到的知识应用于新任务上。作者引用了Teh等人的工作【25】,该工作通过蒸馏技术将不同任务特定的知识转移到一个多任务学习的代理中。此外,Andreas等人【1】提出了基于选项框架(option framework)和模块化网络的多任务学习方法,通过共享不同任务的子策略来实现知识转移。
    • Schaul等人【19】提出了将目标状态编码到值函数中,展示了其对新目标的泛化能力。Oh等人【17】的工作学习了一个元控制器,并使用参数化的策略来组合新的策略,能很好地泛化到新的指令上。
  2. 任务与环境的分离表示

    • 这一部分的工作探索了将任务和环境的表示分离,以增强知识转移的能力。作者提到了一些最新的工作【3, 6, 14, 29】,这些工作通过将Q值函数进行分解,分别学习环境无关的状态-动作特征编码和任务特定的嵌入表示。与这些工作相似,本文的模型也利用了策略网络的分解,但不同的是,本文的模型直接学习了一个分解的策略网络,并加强了任务和环境之间的表示解耦。
  3. 策略与奖励的联合建模

    • 作者还提到了一些联合学习策略和奖励函数的工作,这种方法可以帮助增强学习效果。作者指出,类似的策略在一些最近的研究【3, 12, 29】中也得到了应用,而本文在实验中也发现这种策略对提升学习效果有帮助。

通过这些相关工作,作者为他们提出的方法——即通过环境和任务的嵌入表示来进行策略合成和转移——提供了背景和对比。

Approach

在论文的“Approach”(方法)部分,作者详细介绍了他们提出的策略合成方法(SYNPO),该方法用于解决如何在不同环境和任务中进行转移学习。方法的核心思想是通过学习环境和任务的嵌入表示,并使用这些嵌入来生成策略,从而实现任务和环境的适应和泛化。以下是这一方法的关键组成部分:
在这里插入图片描述

1. 问题定义与主要思想

  • 问题定义:作者的研究围绕如何让一个强化学习代理在不同环境和任务(环境 ( ε (\varepsilon (ε) 和任务 ( τ (\tau (τ))中适应并学习。作者假设,代理在有限的环境和任务组合上训练(称为已见组合),并希望能推广到未见过的环境和任务组合上。目标是从少量的训练组合中学习,使得代理能够推广到所有环境和任务组合中。
  • 主要思想:作者提出通过环境嵌入 ( e ε (e_\varepsilon (eε) 和任务嵌入 ( e τ (e_\tau (eτ) 来组合策略。这些嵌入从训练组合中学习,并在未见组合中生成策略时使用。

2. 策略分解与合成

  • 策略由环境嵌入和任务嵌入通过双线性映射组合得到:
    [ π z ( a ∣ s ) ∝ exp ⁡ ( ψ s T U ( e ε , e τ ) ϕ a + b π ) ] [\pi_z(a|s) \propto \exp(\psi_s^T U(e_\varepsilon, e_\tau) \phi_a + b_\pi)] [πz(as)exp(ψsTU(eε,eτ)ϕa+bπ)]
    其中, ( ψ s (\psi_s (ψs) 和 ( ϕ a (\phi_a (ϕa) 分别是状态和动作的特征表示, ( U ( e ε , e τ ) (U(e_\varepsilon, e_\tau) (U(eε,eτ)) 是基于环境和任务嵌入的策略矩阵。

  • 这个策略矩阵 ( U ( e ε , e τ ) (U(e_\varepsilon, e_\tau) (U(eε,eτ)) 被分解为一组基矩阵的线性组合:
    [ U ( e ε , e τ ) = ∑ k α k ( e ε , e τ ) Θ k ] [ U(e_\varepsilon, e_\tau) = \sum_k \alpha_k(e_\varepsilon, e_\tau) \Theta_k ] [U(eε,eτ)=kαk(eε,eτ)Θk]

    这里, ( α k ( e ε , e τ ) (\alpha_k(e_\varepsilon, e_\tau) (αk(eε,eτ)) 是环境和任务嵌入生成的组合系数, ( Θ k (\Theta_k (Θk) 是共享的基矩阵。

3. 解耦环境与任务嵌入的学习

  • 为了避免环境和任务嵌入在训练中过度拟合,导致对未见组合的泛化能力下降,作者提出了一种解耦学习的目标。该目标使得环境和任务嵌入能够被明确区分出来,从而提高它们的独特性和泛化能力。
  • 解耦的策略是通过引入区分性损失函数,将环境和任务嵌入与代理的交互轨迹进行关联。具体来说:
    • 环境嵌入通过以下多分类目标来区分不同的环境:
      [ ℓ ε : = − ∑ t log ⁡ P ( ε ∣ x t ) [ \ell_\varepsilon := -\sum_t \log P(\varepsilon | x_t) [ε:=tlogP(εxt)]
    • 任务嵌入通过类似的方式区分不同的任务:
      [ ℓ τ : = − ∑ t log ⁡ P ( τ ∣ x t ) [\ell_\tau := -\sum_t \log P(\tau | x_t) [τ:=tlogP(τxt)]
      其中, ( x t = { ψ s T Θ k ϕ a } (x_t = \{\psi_s^T \Theta_k \phi_a\} (xt={ψsTΘkϕa}) 是状态-动作表示,能够从环境和任务的嵌入中区分出轨迹所属的环境或任务。

4. 联合学习策略与奖励

  • 作者还提出联合学习策略和奖励函数的模型。在策略合成的过程中,代理不仅学习策略,还学习一个预测奖励的模型,形式与策略类似:
    [ r z ( s , a ) = ψ s T V ( e ε , e τ ) ϕ a + b r ] [ r_z(s, a) = \psi_s^T V(e_\varepsilon, e_\tau) \phi_a + b_r] [rz(s,a)=ψsTV(eε,eτ)ϕa+br]
  • 奖励的预测采用了与策略类似的结构,但使用了不同的组合系数 ( β k ( e ε , e τ ) (\beta_k(e_\varepsilon, e_\tau) (βk(eε,eτ)) 和基矩阵 ( Θ k (\Theta_k (Θk)。

5. 学习过程

  • 整个模型的学习由多个损失函数组成,包括策略的交叉熵损失、奖励的均方误差损失,以及解耦学习的区分性损失。这些损失的组合构成了最终的目标函数:
    [ L : = E z [ ℓ π z + λ 1 ℓ r z + λ 2 ℓ ε + λ 3 ℓ τ ] ] [ L := \mathbb{E}_z[\ell_{\pi_z} + \lambda_1 \ell_{r_z} + \lambda_2 \ell_\varepsilon + \lambda_3 \ell_\tau]] [L:=Ez[πz+λ1rz+λ2ε+λ3τ]]
  • 这些损失通过经验回放(experience replay)优化,具体的算法在附录中提供。

6. 未见环境与任务的转移

  • 在遇到完全未见的环境或任务时,模型需要进行微调。此时,只更新环境或任务的嵌入,而保持策略合成规则不变。这样,模型能够快速适应新的环境和任务,且只需要少量的数据(例如一次示范)。

论文提出的SYNPO方法通过学习环境和任务的嵌入来生成策略,并使用解耦学习目标增强了嵌入的区分性。这一方法能够在多任务和多环境的强化学习中实现有效的转移学习和适应。

题主的想法

论文中的策略合成算法(SYNPO)具有通用性,可以应用于不同的强化学习算法,比如PPO(Proximal Policy Optimization)。SYNPO的核心思想是通过环境和任务的嵌入表示来生成策略,因此这一方法的策略生成部分可以和不同的强化学习算法集成在一起。

1. 策略生成的独立性

  • SYNPO算法的关键在于策略的合成,即通过学习到的环境和任务嵌入生成策略。这种合成策略的方式并不依赖于特定的强化学习算法,只是为不同的任务和环境生成合适的策略函数。因此,SYNPO生成的策略可以用于任何基于策略梯度的方法,如PPO、A2C、TRPO等。

2. PPO中的应用

  • PPO是一种基于策略优化的强化学习算法,它通过优化策略的损失函数来提高累积奖励。SYNPO生成的策略可以直接作为PPO的策略,具体而言,SYNPO生成的策略 ( π ( a ∣ s ) (\pi(a|s) (π(as)) 可以作为PPO更新时的当前策略。
  • 在PPO中,代理通过旧的策略和新的策略之间的比例更新损失函数,保证策略变化不会太大。因此,可以使用SYNPO生成的策略作为当前策略,然后按照PPO的规则进行优化和更新。
  • 在SYNPO中,策略是基于任务和环境的嵌入生成的,PPO则可以使用这个生成的策略来优化和提高累积奖励。

3. 策略合成与PPO的兼容性

  • SYNPO中的策略生成模块与PPO这样的基于策略优化的方法兼容性强。PPO的损失函数是基于策略的梯度更新,而SYNPO生成的策略 ( π ( a ∣ s ) (\pi(a|s) (π(as)) 也可以通过梯度更新进行优化。在PPO中,可以通过SYNPO生成不同任务和环境组合的策略,并使用PPO进行优化,使得这些策略在不同环境和任务下都能够有效工作。
  • 在训练过程中,可以用SYNPO来处理多任务和多环境的情况,并在每个任务-环境组合上应用PPO来优化策略,从而提高转移学习的效果。

4. 扩展性和泛化能力

  • SYNPO通过嵌入环境和任务信息,实现了策略的分解和组合。这种方法可以很好地与PPO集成在一起,特别是在多任务和多环境的强化学习场景下,能够增强PPO的泛化能力和转移能力。
  • 对于每个新的环境或任务组合,SYNPO可以快速生成初始策略,而PPO则通过反复优化来提高策略的表现。这种结合可以在未见过的环境或任务上表现出良好的适应性。

5. 结合方法的示例

  • 在实际应用中,结合SYNPO和PPO的过程如下:
    1. 使用SYNPO生成当前任务和环境的初始策略 ( π ( a ∣ s ) (\pi(a|s) (π(as)),这一步是基于环境和任务的嵌入来组合策略。
    2. 使用PPO的更新机制,通过优化损失函数来调整策略,逐步提高代理的表现。
    3. 对于新任务或环境,SYNPO可以快速生成策略,PPO可以进一步对该策略进行微调优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值