数域的性质


数域的性质

数域是数学中的一个代数结构,定义为一个集合,其中定义了两种运算:加法乘法,并且这些运算满足一定的条件。具体来说,数域具有以下特性:

  1. 封闭性:对于数域中的任意两个元素,加法和乘法的结果仍然在该数域中。
  2. 加法和乘法的结合律:对于任意数域中的元素 (a)、(b) 和 (c),有:
    • 加法结合律: ( ( a + b ) + c = a + ( b + c ) ((a + b) + c = a + (b + c) ((a+b)+c=a+(b+c))
    • 乘法结合律: ( ( a ⋅ b ) ⋅ c = a ⋅ ( b ⋅ c ) ((a \cdot b) \cdot c = a \cdot (b \cdot c) ((ab)c=a(bc))
  3. 加法和乘法的交换律:对于数域中的任意两个元素 ( a (a (a) 和 (b),有:
    • 加法交换律: ( a + b = b + a ( a + b = b + a (a+b=b+a)
    • 乘法交换律: ( a ⋅ b = b ⋅ a ( a \cdot b = b \cdot a (ab=ba)
  4. 加法和乘法的单位元:数域中存在两个特殊的元素:
    • 加法单位元(零元):存在一个元素 0,使得对于任意元素 ( a (a (a),有 ( a + 0 = a (a + 0 = a (a+0=a)。
    • 乘法单位元(幺元):存在一个元素 1(不为 0),使得对于任意元素 ( a (a (a),有 ( a ⋅ 1 = a (a \cdot 1 = a (a1=a)。
  5. 加法逆元:对于数域中的每个元素 ( a (a (a),存在一个元素 ( − a (-a (a),使得 ( a + ( − a ) = 0 (a + (-a) = 0 (a+(a)=0)。
  6. 乘法逆元:对于数域中的每个非零元素 ( a (a (a),存在一个元素 ( a − 1 (a^{-1} (a1),使得 ( a ⋅ a − 1 = 1 (a \cdot a^{-1} = 1 (aa1=1)。
  7. 乘法对加法的分配律:对于任意数域中的元素 ( a (a (a)、 ( b (b (b) 和 ( c (c (c),有:
    • ( a ⋅ ( b + c ) = a ⋅ b + a ⋅ c (a \cdot (b + c) = a \cdot b + a \cdot c (a(b+c)=ab+ac)。

常见的数域包括有理数域 ( Q (\mathbb{Q} (Q)、实数域 ( R ) (\mathbb{R}) (R) 和复数域 ( C (\mathbb{C} (C) 等。


  • 18
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值