逻辑回归的原理(用于解决二分类问题)

1.输入

                h(w)=w_{1}x_{1}+w_{2}x_{2}+w_{3}x_{3}+...+b

        逻辑回归的输入就是一个线性回归的输出。

2.激活函数

        sigmoid函数

g(x)=\frac{1}{1+e^{​{-x_{}}^{}}}

 分析:

  • 回归的结果输入到sigmoid函数当中
  • 输出结果:[0, 1]区间中的一个概率值,默认为0.5为阈值

输出结果解释(重要):假设有两个类别A,B,并且假设我们的概率值为属于A(1)这个类别的概率值。现在有一个样本的输入到逻辑回归输出结果0.6,那么这个概率值超过0.5,意味着我们训练或者预测的结果就是A(1)类别。那么反之,如果得出结果为0.3那么,训练或者预测结果就为B(0)类别。

所以接下来我们回忆之前的线性回归预测结果我们用均方误差衡量,那如果对于逻辑回归,我们预测的结果不对该怎么去衡量这个损失呢?我们来看这样一张图

 那么如何去衡量逻辑回归的预测结果与真实结果的差异呢?

3.损失以及优化

1.损失

逻辑回归的损失,称之为对数似然损失,公式如下:

  • 分开类别:

cost(h_{\theta }(x),y)=\left\{\begin{matrix} -log(h_{\theta }(x)) & y=1\\ -log(1-h_{\theta }(x))) &y=0 \end{matrix}\right. 

怎么理解单个的式子呢?这个要根据log函数的图像来理解 

当y=1时: 

同理,我们也可以画出当y=0时,函数C(\theta )的图像: 

  •  综合完整损失函数

 cost(h_{\theta }(x),y)=\sum_{i=1}^{m}-y_{i}log(h_{\theta }(x))-(1-y_{i})log(1-h_{\theta }(x))

 接下来带入上面那个例子来计算一遍,就能有意义了。

2.优化

同样使用梯度下降优化算法,去减少损失函数的值。这样去更新逻辑回归前面对应算法的权重参数,提升原本属于1类别的概率,降低原本是0类别的概率。

  • 4
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

另一个人。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值