和式的变换&莫比乌斯反演&欧拉反演

本文介绍了和式的变换,特别是围绕交换律和结合律的核心公式,以及狄利克雷卷积中的元函数、常数函数和恒等函数。重点讲解了莫比乌斯反演和其特殊情况欧拉反演,以及它们在简化计算中的作用。
摘要由CSDN通过智能技术生成

和式的变换

和式的变换主要有几个核心公式

1.交换律,结合律

2. \sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{d\mid gcd(i,j))}d=\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{d=1}^{n}\left [ d \mid i\right] \left [ d\mid j \right ]d

3.\sum_{i=1}^{n}\sum_{j=1}^{m}\left [ gcd(i,j)=k \right ]=\sum_{ik=1}^{n}\sum_{jk=1}^{m}\left [ gcd(ik,jk)=k \right ]=\sum_{i=1}^{\frac{n}{k}}\sum_{j=1}^{\frac{m}{k}}\left [ gcd(i,j)=1 \right ]

4.\sum_{i=1}^{n}\sum_{j=1}^{m}A(i)B(j)=\sum_{j=1}^{m}\sum_{i=1}^{n}A(i)B(j)

5. \sum_{i=1}^{n}\sum_{j=1}^{m}A(i)B(j)=\sum_{i=1}^{n}A(i)\sum_{j=1}^{m}B(j)

其中[ ]为示性函数,符合条件的为1

常见变换式:

1.\left [ gcd(i,j)=1 \right ]=\sum_{d\mid gcd(i,j))}\mu (d)

同时这个式子也是莫比乌斯反演的常用式子

2.d\mid gcd(i,j)\rightarrow \left [ d\mid i \right ]\left [ d\mid j \right ]

3.\sum_{i=1}^{n}\left [ d\mid i \right ]\rightarrow \left \lfloor \frac{n}{d} \right \rfloor

4.\sum_{i=1}^{n}\sum_{j=1}^{m}\left [ gcd(i,j)=k \right ]=\sum_{i=1}^{\frac{n}{k}}\sum_{j=1}^{\frac{m}{k}}\left [ gcd(i,j)=1 \right ]

其中n/k和m/k为下取整但在代码中int会下取整所以没有标明

5.\sum_{k=1}^{n}\sum_{d=1}^{\frac{n}{k}}\mu (d)\left \lfloor \frac{n}{kd} \right \rfloor\left \lfloor \frac{m}{kd} \right \rfloor\rightarrow \sum_{k=1}^{n}\sum_{T=1}^{n}\mu (\frac{T}{k})\left \lfloor \frac{n}{T} \right \rfloor\left \lfloor \frac{m}{T} \right \rfloor

大部分不做这个变换而是在向函数传参时传n/k为n

狄利克雷卷积

(f*g)(n)=\sum_{d \mid n}^{}f(d)g(\frac{n}{d})=\sum_{d\mid n}^{}f(\frac{n}{d})g(d)

三个常用函数

1.元函数

\varepsilon (n)=\left [ n=1 \right ]

2.常数函数

1(n)=1

3.恒等函数

id(n)=n

常用的卷积关系

1.\sum_{d\mid n}^{}\mu (d)=\left [ n=1 \right ]\Leftrightarrow \mu *1=\varepsilon

2.\sum_{d\mid n}^{}\varphi (d)=n\Leftrightarrow \varphi *1=id

3.\sum_{d\mid n}^{}\mu (d)\frac{n}{d}=\varphi (n)\Leftrightarrow \mu * id=\varphi

莫比乌斯反演

公式为:
f(n)=\sum_{d \mid n}g(d)\Leftrightarrow g(n)=\sum_{d \mid n}^{}\mu (d)f(\frac{n}{d})

但是经常使用的为

\left [ gcd(i,j)=1 \right ]=\sum_{d\mid gcd(i,j))}\mu (d)

欧拉反演

欧拉反演只是莫比乌斯反演的一种特殊情况,求

\sum_{i=1}^{n} \sum_{j=1}^{m}gcd(i,j)

经过欧拉反演可以得出

\sum_{i=1}^{n} \sum_{j=1}^{m}\sum_{d=1}^{n}[d\mid i][d\mid j]\varphi (d)

这比经过莫比乌斯反演得出的式子简洁许多

欧拉反演的式子:
\sum_{d\mid n}^{n}\varphi (d)=n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值