【故障诊断】基于TCN -CNN并行故障分类、TCN-GRU并行故障分类模型的轴承故障诊断研究[西储大学数据](Python代码实现)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、西储大学数据集介绍

三、TCN-CNN并行故障分类模型

四、TCN-GRU并行故障分类模型

五、模型应用与实验结果

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据、文档说明书下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于TCN(时间卷积网络)-CNN(卷积神经网络)并行故障分类以及TCN-GRU(门控循环单元)并行故障分类模型的轴承故障诊断研究,结合西储大学的数据集,是近年来故障诊断领域的热点研究方向。以下是对这两种模型及其在西储大学数据集上应用的详细分析:

一、研究背景与意义

轴承作为机械设备中的关键部件,其运行状态直接影响到整个设备的性能和稳定性。然而,由于工作环境复杂、运行时间长等因素,轴承容易发生故障,导致设备停机、生产中断,甚至引发安全事故。因此,对轴承进行及时、准确的故障诊断具有重要意义。TCN、CNN和GRU作为深度学习中的先进模型,在信号处理、时间序列分析和模式识别等方面具有显著优势,非常适用于轴承故障诊断任务。

二、西储大学数据集介绍

西储大学数据集是轴承故障诊断领域广泛使用的标准数据集之一。该数据集由CWRU工程学院机械工程实验室开发,包含了正常工况和故障工况下的振动信号数据。数据采集速率为12kHz或48kHz,通过加速度传感器采集得到。数据集涵盖了轴承内圈、外圈和滚动体(球)损坏等多种故障类型,每种故障情况还区分了不同的故障尺寸和不同的负载条件。这使得数据集具有丰富的故障信号特征,非常适合用于开发和验证各种数据分析、特征提取和机器学习算法。

三、TCN-CNN并行故障分类模型

  1. 模型结构

    • TCN部分:通过一维因果卷积对过去的数据进行提取,保证时序性。残差连接加快收敛速度,扩张卷积实现时序特征提取。
    • CNN部分:用于提取信号中的局部特征,如纹理、边缘等。通过卷积核在信号上滑动,提取不同尺度的特征。
    • 并行结构:将TCN和CNN的输出进行拼接或融合,共同用于后续的故障分类任务。
  2. 模型优势

    • 结合了TCN的时序特征提取能力和CNN的局部特征提取能力,提高了模型的故障识别精度。
    • 并行结构使得模型能够同时处理时序信息和局部特征,增强了模型的鲁棒性和泛化能力。

四、TCN-GRU并行故障分类模型

  1. 模型结构

    • TCN部分:与TCN-CNN模型中的TCN部分相同,用于提取时序特征。
    • GRU部分:作为循环神经网络的变种,具有非线性拟合能力,能够有效提取数据特征。GRU模型能够处理序列数据中的短期和长期依赖关系。
    • 并行结构:将TCN和GRU的输出进行拼接或融合,共同用于后续的故障分类任务。
  2. 模型优势

    • 结合了TCN的时序特征提取能力和GRU的序列处理能力,使得模型能够更准确地捕捉信号中的长期依赖关系。
    • 并行结构使得模型能够同时利用时序信息和序列数据中的依赖关系,提高了模型的故障识别性能。

五、模型应用与实验结果

在西储大学数据集上,TCN-CNN并行故障分类模型和TCN-GRU并行故障分类模型均取得了良好的故障识别效果。通过对比实验,可以发现这两种模型在故障分类精度、鲁棒性和泛化能力等方面均优于传统的故障诊断方法。此外,这两种模型还可以进一步结合其他深度学习技术,如注意力机制、迁移学习等,以进一步提高故障识别的准确性和效率。

综上所述,基于TCN-CNN并行故障分类和TCN-GRU并行故障分类模型的轴承故障诊断研究具有重要的理论意义和实际应用价值。这两种模型为轴承故障诊断提供了新的思路和方法,有望在未来的故障诊断领域发挥更大的作用。

📚2 运行结果

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

 [1]李酉戌.基于卷积神经网络的网络故障诊断模型[J].软件导刊, 2017, 16(12):4.

[2]谭博韬,黄民,刘跃,等.基于CNN-LSTM故障诊断的自动扶梯监测软件设计[J].电子测量技术, 2023, 46(12):1-7.

[3]吴聪,李梦男,李琨.基于数据划分和ODM-CNN的滚动轴承故障诊断[J].煤矿机械, 2023.

[4]杨慧,张瑞君,陈国良.基于ICNN-BiGRU的轴承故障诊断模型[J].Journal of Mechanical & Electrical Engineering, 2022, 39(11).

[5]霍志浩,尹安,陈洁灵,等.基于CNN-LSTM的轴系系统故障诊断系统设计与实现[C]//第32届中国过程控制会议(CPCC2021)论文集.2021.

🌈Python代码、数据、文档说明书下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值