基于深度学习的轴承故障识别-LSTM与CNN对比

1024程序员节快乐~


根据前两篇博文的实验结果,可以看出,两种模型相比,基于卷积神经网络的轴承故障诊断模型在各方面性能都更为优异。准确率比基于长短时记忆网络的轴承故障诊断模型高出近10%,而训练用时要节省近15分钟。其实对我来说最关键的是CNN训练快啊,我的电脑不是n卡,没有gpu加速,训练一次15分钟实在是有点膈应人(这期间占着我的内存我还不能开模拟器挂游戏)。

LSTM与CNN实验结果对比

网络模型

acc

loss

训练用时

LSTM

0.8716

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhangjiali12011

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>