支持向量机

支持向量机


支持向量机基本型

前情回顾

  • 基本型:原来问题是线性可分的,找到线性可分问题的正中间的划分,在划分过程中找一个简单的优化技术(拉格朗日乘子法得到闭式解的问题,在通过SMO得到一个迭代的解法)。
  • 但是现实问题中并不都是线性可分问题,那就要在线性可分基本型之上加一些变换。

特征空间映射

  • 在很多问题,在原始空间并不能得到线性划分的结果,并不是线性超平面所能划分的。
  • 支持向量机要找,线性超平面离样本间隔最大。
    在这里插入图片描述
  • 样本在低维空间线性不可分,通过x→Φ(x),将样本映射到更高位空间中,使样本在更高维空间线性可分。
  • 如果原始空间是有限维(属性数有限),一定存在一个高维特征空间使样本线性可分。
  • x映射成,向量Φ(x),则支持向量机基本型求解的所有过程的所有形式,将x换成Φ(x)。
    在这里插入图片描述
  • 同样使用拉格朗日乘子法→求ω和b的偏导→回代→最大化→得到对偶问题,与原始空间的支持向量机的形式类似,只有原始:xT x,高维:Φ(x)T Φ(x)不同。
  • 然而映射到高维空间后,会出现计算难度加大的问题。(Φ(x)是甚高维向量。Φ(x)T Φ(x)是两个甚高维向量做内积,计算量很大。)
  • 假设我们无需直接计算两个非常高维向量的内积,而是用一个简单好算的东西代替内积。甚至于无需计算单个向量本身是什么,而是直接得到内积的结果。

核函数

在这里插入图片描述

  • 核函数
    • 在低维空间中将xi,xj作为核函数的输入,计算结果相当于在某个高维空间中,xi,xj映射于高维空间中向量Φ(xi),Φ(xj)的内积。
    • 求高维向量内积—→在低维空间中对核函数求值。
  • Mercer定理
    在这里插入图片描述
    • 某个空间的任何两点间距离确定,则该空间确定。
    • 核矩阵,正好满足距离矩阵的含义(满足对称、半正定),就对应了一个向量空间,可以作为核函数使用。
  • RKHS
    • 由核函数对应的核矩阵,确定了该向量空间(RKHS)的每两点间的距离关系。
  • 核函数的选择
    • Φ得到的甚高维空间1,和由K得到的甚高维空间2,并不一定是相同。
    • 我们要从得到的核函数集合{k1,k2,...,k∞}中,找出K*(最优核函数)对应Φ得到的甚高维空间1
    • 核函数的选择,成为决定支持向量机性能的关键!

如何使用SVM

  • 以回归学习为例
    在这里插入图片描述

  • ε-不敏感损失函数
    在这里插入图片描述

  • 求解过程:同样使用拉格朗日乘子法→求偏导→回代→最大化→得到对偶问题
    在这里插入图片描述

  • 在现实应用中如何使用SVM
    在这里插入图片描述


以上就是本文的全部内容,感谢各位的阅读与支持!

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值