平面及其方程

文章介绍了曲面和交线的定义,曲面通过满足特定方程的点集形成,交线是两个曲面的公共轨迹。接着详细阐述了平面方程的点法式和一般式,以及它们与法向量的关系。最后讨论了两平面夹角的计算,主要依赖于法向量的夹角。
摘要由CSDN通过智能技术生成

一、曲面和交线的定义

空间解析几何中,任何曲面或曲线都看作点的几何轨迹。在这样的意义下,如果曲面 S S S与三元方程:
F ( x , y , z ) = 0 (1) F(x,y,z)=0\tag{1} F(x,y,z)=0(1)
有下述关系:

  1. 曲面 S S S 上任一点的坐标都满足方程 ( 1 ) (1) (1)
  2. 不在曲面 S S S上的点坐标都不满足方程 ( 1 ) (1) (1)

那么,方程 ( 1 ) (1) (1)就叫做曲面 S S S的方程,而曲面 S S S就叫做方程 ( 1 ) (1) (1)的图形。

上面的概念其实就是在描述数学表达式恰好能表达曲面,不多也不少。那么空间曲线又是如何定义的?

空间曲线可以看作两个曲面 S 1 S1 S1 S 2 S2 S2 的交线,设曲面的交线为 C C C,则交线可以应该满足方程组:
{ F ( x , y , z ) = 0 G ( x , y , z ) = 0 \left\{ \begin{aligned} F(x,y,z)=0\\ G(x,y,z)=0 \end{aligned} \right. {F(x,y,z)=0G(x,y,z)=0

二、平面方程

2.1 点法式方程

确定平面中的一点及其方向就是点法式方程的基本思想。平面中的点没有什么特殊的地方,就是属于平面上的一点, 那么方向应该如何表达合适呢?答案是,平面法向量。平面法向量是一个非零向量[1]垂直与待表示的平面,由线面垂直的定义,在平面上任意向量均与该平面的法向量垂直。

因为过一点有且仅有一条与平面垂直的直线。假设我们在平面 Π \Pi Π 上有一点 M 0 ( x 0 , y 0 , z 0 ) M_0(x_0,y_0,z_0) M0(x0,y0,z0) 和它的法向量 n ⃗ = ( A , B , C ) \vec{n}=(A,B,C) n =(A,B,C) ,这个平面被唯一确定,根据定义:
n ⃗ ⋅ M 0 M → = 0 \vec{n}\cdot\overrightarrow{M_0M}=0 n M0M =0
因为 n ⃗ = ( A , B , C ) \vec{n}=(A,B,C) n =(A,B,C) M 0 M → = ( x − x 0 , y − y 0 , z − z 0 ) \overrightarrow{M_0M}=(x-x_0,y-y_0,z-z_0) M0M =(xx0,yy0,zz0)所以有:
A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 (2) A(x-x_0)+B(y-y_0)+C(z-z_0)=0\tag{2} A(xx0)+B(yy0)+C(zz0)=0(2)
这就是平面任意一点 ( x t , y t , z t ) (x_t,y_t,z_t) (xt,yt,zt) 都满足的方程,这就是平面的点法式方程,点指的是平面上一点,法指的是非零法向量。

2.2 平面的一般方程

对于一个三元一次方程表示:
A x + B y + C z + D = 0 (3) Ax+By+Cz+D=0\tag{3} Ax+By+Cz+D=0(3)
任取满足该方程的一个点,代入方程:
A x 0 + B y 0 + C z 0 + D = 0 (4) Ax_0+By_0+Cz_0+D=0\tag{4} Ax0+By0+Cz0+D=0(4)
式子 ( 3 ) − ( 4 ) (3)-(4) (3)(4)
A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 (5) A(x-x_0)+B(y-y_0)+C(z-z_0)=0\tag{5} A(xx0)+B(yy0)+C(zz0)=0(5)
我们知道 ( 5 ) (5) (5)是一个点法式方程。所以:

  • 任意 x , y , z x,y,z x,y,z都属于平面
  • 不属于平面上的点都不满足 ( 5 ) (5) (5)

从定义上看,方程 ( 3 ) (3) (3)

  • 任意 x , y , z x,y,z x,y,z都属于平面
  • 不属于平面上的点都不满足

这就意味着, A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0 是一个平面方程。它有以下结论:

  • 一般方程的 x , y , z x,y,z x,y,z 系数其实就是一个法向量
  • 如果 D = 0 D=0 D=0 过原点
  • 如果 A = 0 A=0 A=0 法向量为 n ⃗ = ( 0 , B , C ) \vec{n}=(0,B,C) n =(0,B,C) ,法向量垂直 X X X 轴,对应平面平行或包含 X X X
  • 如果 B = 0 B=0 B=0 法向量为 n ⃗ = ( A , 0 , C ) \vec{n}=(A,0,C) n =(A,0,C) ,法向量垂直 Y Y Y 轴,对应平面平行或包含 Y Y Y
  • 如果 C = 0 C=0 C=0 法向量为 n ⃗ = ( A , B , 0 ) \vec{n}=(A,B,0) n =(A,B,0) ,法向量垂直 Z Z Z 轴,对应平面平行或包含 Z Z Z
  • 如果 A = B = 0 A=B=0 A=B=0 法向量为 n ⃗ = ( 0 , 0 , C ) \vec{n}=(0,0,C) n =(0,0,C) ,法向量同时垂直 X , Y X,Y X,Y轴,也就是垂直于对应的 X O Y XOY XOY平面,对应的平面平行或者包含 X O Y XOY XOY
  • 如果 B = C = 0 B=C=0 B=C=0 法向量为 n ⃗ = ( A , 0 , 0 ) \vec{n}=(A,0,0) n =(A,0,0) ,法向量同时垂直 Y , Z Y,Z Y,Z轴,也就是垂直于对应的 Y O Z YOZ YOZ平面,对应的平面平行或者包含 Y O Z YOZ YOZ
  • 如果 A = 0 = C A=0=C A=0=C 法向量为 n ⃗ = ( 0 , B , 0 ) \vec{n}=(0,B,0) n =(0,B,0) ,法向量同时垂直 X , Z X,Z X,Z轴,也就是垂直于对应的 X O Z XOZ XOZ平面,对应的平面平行或者包含 X O Z XOZ XOZ

法向量轴分量中只有一个为0,表示所表示的平面是平行或者重合不为零的轴分量;如果有两个0,表示所表示的平面平行或者重合零分量交叉形成的平面。当然如果都不为零,那就是一般情况了。

三、两平面的夹角

从几何上看,平面的夹角是小于或者等于90度的,但在解析几何中,我们更加倾向于用法向量之间的夹角来定义,用向量夹角表示存在一个问题,向量夹角的范围是 [ 0 , π ] [0,\pi] [0,π],应该特别注意。

设平面 Π 1 \Pi_1 Π1 Π 2 \Pi_2 Π2 的法向量依次为 n 1 = ( A 1 , B 1 , C 1 ) \bold{n_1}=(A_1,B_1,C_1) n1=(A1,B1,C1) n 2 = ( A 2 , B 2 , C 2 ) \bold{n_2}=(A_2,B_2,C_2) n2=(A2,B2,C2) ,则平面的夹角 θ \theta θ 应为: ( n 1 , n 2 ^ ) (\widehat{\bold{n_1},\bold{n_2}}) (n1,n2 )或者 ( − n 1 , n 2 ^ ) = π − ( n 1 , n 2 ^ ) (\widehat{\bold{-n_1},\bold{n_2}})=\pi-(\widehat{\bold{n_1},\bold{n_2}}) (n1,n2 )=π(n1,n2 ),选两个中的锐角或者直角,所以: cos ⁡ θ = ∣ ( n 1 , n 2 ^ ) ∣ \cos\theta=|(\widehat{\bold{n_1},\bold{n_2}})| cosθ=(n1,n2 )。用向量计算公式则为:
cos ⁡ θ = ∣ A 1 A 2 + B 1 B 2 + C 1 C 2 ∣ A 1 2 + B 1 2 + C 1 2 A 2 2 + B 2 2 + C 2 2 (6) \cos \theta=\frac{|A_1A_2+B_1B_2+C_1C_2|}{\sqrt{A_1^2+B_1^2+C_1^2}\sqrt{A_2^2+B_2^2+C_2^2}}\tag{6} cosθ=A12+B12+C12 A22+B22+C22 A1A2+B1B2+C1C2(6)
从向量垂直和平行的充分必要条件立刻可推得:

  • Π 1 、 Π 2 \Pi_1、\Pi_2 Π1Π2 垂直相当于 A 1 A 2 + B 1 B 2 + C 1 C 2 = 0 A_1A_2+B_1B_2+C_1C_2=0 A1A2+B1B2+C1C2=0
  • Π 1 、 Π 2 \Pi_1、\Pi_2 Π1Π2 平行或重合相当于 A 1 A 2 + B 1 B 2 + C 1 C 2 = 0 \frac{A_1}{A_2}+\frac{B_1}{B_2}+\frac{C_1}{C_2}=0 A2A1+B2B1+C2C1=0

[1] 主要是你是零向量也没啥意思,什么信息都给不了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值