[土堆]深度学习快速入门教程笔记——神经网络模型训练实战——016

 1.神经网络模型训练一般步骤


# 1. 在model.py搭建神经网络
import torch
from torch import nn

class YourModelClass(nn.Module):
    def __init__(self):
        super(YourModelClass, self).__init__()
        self.model = nn.Sequential(
             # operations
        )

    def forward(self, x):
       x = self.model(x)
       return x

#检查神经网络设置是否出错
if __name__ =="__main__":
    model = YourModelClass()
    input = torch.ones((expected input))
    output = model(input)
    print(output.shape)


# 2. 创建train.py文件,在train.py文件中执行下述第3-21步操作

# 3. 创建训练数据集和测试数据集
from model import *
train_dataset = YourDatasetClass(train_data)
test_dataset = YourDatasetClass(test_data)

# 4. 获取数据集大小
train_data_size = len(train_dataset)
test_data_size = len(test_dataset)

# 5. 创建数据加载器
batch_size = 32  # 设置batch size
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

# 6. 创建网络模型实例
model = YourModelClass()  # 实例化你的模型类

# 7. 选择损失函数
loss_fn = nn.CrossEntropyLoss()  # 选择交叉熵损失函数(适用于分类问题)

# 8. 选择优化器和学习率
learning_rate = 0.001  # 设置学习率
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)  # 使用SGD优化器

# 9. 初始化训练和测试步数
total_train_step = 0
total_test_step = 0

# 10. 初始化轮次
epochs = 1000  # 设置总的训练轮次

# 11. 训练和测试循环
for epoch in range(epochs):
    # 12. 开始训练步骤
    model.train()
    for i, (inputs, targets) in enumerate(train_dataloader):
        total_train_step += 1
        # 将梯度清零
        optimizer.zero_grad()
        # 前向传播
        outputs = model(inputs)
        # 计算损失
        loss = loss_fn(outputs, targets)
        # 反向传播
        loss.backward()
        # 更新模型参数
        optimizer.step()
        # 输出损失值
        print(f"Epoch {epoch+1}, Train Step {total_train_step}, Loss: {loss.item()}")

    # 13. 开始测试步骤
    model.eval()
    total_test_loss = 0.0
    total_accuracy = 0.0
    with torch.no_grad():
        for i, (inputs, targets) in enumerate(test_dataloader):
            total_test_step += 1
            # 前向传播
            outputs = model(inputs)
            # 计算损失
            test_loss = loss_fn(outputs, targets)
            total_test_loss += test_loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy += accuracy

    # 计算平均测试损失
    avg_test_loss = total_test_loss / len(test_dataloader)
    print(f"Epoch {epoch+1}, Avg. Test Loss: {avg_test_loss}")
    
    # 计算准确率
    print(f"Verage accuracy:{total_accuracy/test_data_size}")

    # 21. 保存模型
    torch.save(model.state_dict(), f"model_epoch{epoch+1}.pth")

# 22. 结束训练
print("Training Finished.")


 2.训练CIFAR 10 model 网络模型


首先需要创建神经网络并测试,保存在model文件中:

# 搭建神经网络
import torch
from torch import nn

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
       x = self.model(x)
       return x

if __name__ =="__main__":
    tudui = Tudui()
    input = torch.ones((64, 3, 32, 32))
    output = tudui(input)
    print(output.shape)

 随后创建train文件,根据步骤逐步完成训练代码框架:

import torchvision
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from model import * # 相当于把 model中的所有内容写到这里,这里直接把 model 写在这里

# 准备数据集
train_data = torchvision.datasets.CIFAR10("./dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)       
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)       

# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10,则打印:训练数据集的长度为:10
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))

# 利用 Dataloader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)        
test_dataloader = DataLoader(test_data, batch_size=64)

# 创建网络模型
tudui = Tudui() 

# 损失函数
loss_fn = nn.CrossEntropyLoss() # 交叉熵,fn 是 fuction 的缩写

# 优化器
learning = 0.01  # 1e-2 就是 0.01 的意思
optimizer = torch.optim.SGD(tudui.parameters(),learning)   # 随机梯度下降优化器  

# 设置网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0

# 训练的轮次
epoch = 10

# 添加 tensorboard
writer = SummaryWriter("logs")

for i in range(epoch):
    print("-----第 {} 轮训练开始-----".format(i+1))
    
    # 训练步骤开始
    tudui.train() # 当网络中有dropout层、batchnorm层时,这些层能起作用
    for data in train_dataloader:
        imgs, targets = data
        outputs = tudui(imgs)
        loss = loss_fn(outputs, targets) # 计算实际输出与目标输出的差距
        
        # 优化器对模型调优
        optimizer.zero_grad()  # 梯度清零
        loss.backward() # 反向传播,计算损失函数的梯度
        optimizer.step()   # 根据梯度,对网络的参数进行调优
        
        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            print("训练次数:{},Loss:{}".format(total_train_step,loss.item()))  # 方式二:获得loss值
            writer.add_scalar("train_loss",loss.item(),total_train_step)
    
    # 测试步骤开始(每一轮训练后都查看在测试数据集上的loss情况)
    tudui.eval()  # 当网络中有dropout层、batchnorm层时,这些层不能起作用
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():  # 没有梯度了
        for data in test_dataloader: # 测试数据集提取数据
            imgs, targets = data
            outputs = tudui(imgs)
            loss = loss_fn(outputs, targets) # 仅data数据在网络模型上的损失
            total_test_loss = total_test_loss + loss.item() # 所有loss
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy
            
    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss",total_test_loss,total_test_step)
    writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)  
    total_test_step = total_test_step + 1
    
    torch.save(tudui, "./model/tudui_{}.pth".format(i)) # 保存每一轮训练后的结果
    #torch.save(tudui.state_dict(),"tudui_{}.path".format(i)) # 保存方式二         
    print("模型已保存")
    
writer.close()

 最终在Tensorboard可观察到结果如下,通过查看输出结果结合tensorboard的损失值变化情况图,随着训练次数的增加,损失值在优化器的作用下呈现出逐渐减小的趋势:

 


3.模型验证


 完整的模型验证(测试,demo)套路,利用已经训练好的模型,然后给它提供输入

dog.png
import torchvision
from PIL import Image
from torch import nn
import torch

image_path = "imgs/dog.png"
image = Image.open(image_path) # PIL类型的Image
image = image.convert("RGB")  # 4通道的RGBA转为3通道的RGB图片
print(image)

transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),   
                                            torchvision.transforms.ToTensor()])

image = transform(image)
print(image.shape)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()        
        self.model1 = nn.Sequential(
            nn.Conv2d(3,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,64,5,1,2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4,64),
            nn.Linear(64,10)
        )
        
    def forward(self, x):
        x = self.model1(x)
        return x

model = torch.load("model/tudui_29.pth",map_location=torch.device('cpu')) # GPU上训练的东西映射到CPU上    
print(model)
image = torch.reshape(image,(1,3,32,32)) # 转为四维,符合网络输入需求
model.eval()
with torch.no_grad():  # 不进行梯度计算,减少内存计算
    output = model(image)
output = model(image)
print(output)
print(output.argmax(1)) # 概率最大类别的输出

 最终模型预测该图片最大概率为标签为5,即为dog,分类正确

<PIL.Image.Image image mode=RGB size=307x173 at 0x1A23417EDA0>
torch.Size([3, 32, 32])
Tudui(
  (model1): Sequential(
    (0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Flatten(start_dim=1, end_dim=-1)
    (7): Linear(in_features=1024, out_features=64, bias=True)
    (8): Linear(in_features=64, out_features=10, bias=True)
  )
)
tensor([[-12.5589, -24.4361,  -1.3480,  20.7813,  21.4084,  30.2107,  -5.5689,
          -3.5920, -13.8862,  -4.2283]])
tensor([5])

 


4.补充 


1、图像分类利用argmax计算准确性:

import torch
outputs = torch.tensor([[0.1,0.2],
                        [0.05,0.4]])
print(outputs.argmax(0))  # 竖着看,最大值的索引
print(outputs.argmax(1))  # 横着看,最大值的索引
preds = outputs.argmax(0)
targets = torch.tensor([0,1])
print((preds == targets).sum()) # 对应位置相等的个数
tensor([0, 1])
tensor([1, 1])
tensor(2)

2、 特殊层作用

① model.train()和model.eval()的区别主要在于Batch Normalization和Dropout两层。

② 如果模型中有BN层(Batch Normalization)和 Dropout,需要在训练时添加model.train()。model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropout,model.train()是随机取一部分网络连接来训练更新参数。

③ 不启用 Batch Normalization 和 Dropout。 如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()。model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropout,model.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。

④ 训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

⑤ 在做one classification的时候,训练集和测试集的样本分布是不一样的,尤其需要注意这一点。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值