1、项目简介
本项目基于YOLOV5进行车辆车牌识别的目标检测
1.1 项目名称
基于YOLOV5进行车辆车牌识别的目标检测
1.2 项目简介
随着智能交通系统的不断发展,车辆车牌识别技术在交通管理、停车收费、安全监控等领域发挥着越来越重要的作用。本项目旨在开发一个高效准确的车牌识别系统,利用深度学习模型YOLOv5进行车牌检测,并结合光学字符识别(OCR)技术实现车牌号码的提取。通过这个系统,可以提高交通管理和安全监控的自动化水平,减少人工干预。
2、数据
2.1 数据预处理
1.获取数据集的labels目标框标签
-
训练集数据
import os
import numpy
import torch
def createLabels(path='train'):
# 获取当前文件路径
current_path = os.path.dirname(__file__)
# 获取图片路径
image_folder = os.path.join(current_path, "ccpd_green", path, "images")
# 获取相对路径
image_folder = os.path.relpath(image_folder)
# 获取目录下所有的图片
imgslist = os.listdir(image_folder)
# 遍历操作,生成数据容器,遍历每一张图片
for nf, img in enumerate(imgslist):
# 获取文件名称,也是txt的名称,os.path.splitext(),返回一个元组
img_name =