图片识别(TransFormer&CNN&MLP)

目录

一、Transformer

(一)ViT:Transformer 引入计算机视觉的里程碑

(二)Swin-Transformer:借鉴卷积改进 ViT

(三)VAN:使用卷积模仿 ViT

(四)ConvNeXt:CNN 的文艺复兴

二、CNN

三、MLP

(一)MLP-Mixer

(二)MetaFormer


一、Transformer

(一)ViT:Transformer 引入计算机视觉的里程碑

ViT(Vision Transformer)是将 Transformer 架构引入计算机视觉领域的开创性工作。它将图像分割成固定大小的 patches,然后将这些 patches 展平并嵌入到一个序列中,类似于 NLP 中的词嵌入。ViT 使用多头自注意力机制来捕捉图像不同部位之间的全局依赖关系,从而实现图像分类等任务。

ViT 的主要步骤如下:

  1. 图像分割:将图像分割成多个非重叠的 patches。

  2. 嵌入:将每个 patch 映射到一个固定维度的向量。

  3. 位置编码:将位置信息添加到嵌入向量中。

  4. Transformer 编码器:使用多层 Transformer 编码器对序列进行处理。

  5. 分类头:使用一个可学习的分类 token 来预测图像类别。

ViT 的出现为计算机视觉领域带来了新的思路,展示了 Transformer 架构在处理图像数据方面的潜力。

(二)Swin-Transformer:借鉴卷积改进 ViT

Swin-Transformer 是对 ViT 的重要改进,它引入了局部窗口自注意力机制,类似于卷积神经网络(CNN)中的局部感受野概念。Swin-Transformer 将图像分割成多个不重叠的窗口,并在每个窗口内进行自注意力计算,从而减少了计算量并提高了模型的效率。

Swin-Transformer 的主要特点包括:

  1. 局部窗口自注意力:在每个窗口内计算自注意力,减少计算复杂度。

  2. 窗口间信息交互:通过合并和分割窗口来实现不同层次的信息交互。

  3. 层次化特征提取:采用层次化的结构,逐步提取图像的多尺度特征。

Swin-Transformer 在保持 Transformer 的全局建模能力的同时,显著提高了计算效率,使其在多种视觉任务中表现出色。

(三)VAN:使用卷积模仿 ViT

VAN(Vision Attention Network)是一种结合了卷积和 Transformer 的新型网络架构。它通过使用卷积操作来提取局部特征,并利用 Transformer 的自注意力机制来捕捉全局信息。VAN 的设计旨在利用卷积的高效性和 Transformer 的强大建模能力。

VAN 的主要特点包括:

  1. 卷积特征提取:使用卷积层提取图像的局部特征。

  2. 自注意力增强:在卷积特征的基础上,添加自注意力模块以捕捉全局信息。

  3. 轻量化设计:通过优化网络结构,减少计算量和参数数量。

VAN 在图像分类、目标检测等任务中展现了良好的性能,证明了卷积和 Transformer 结合的有效性。

(四)ConvNeXt:CNN 的文艺复兴

ConvNeXt 是对 CNN 架构的一次重新设计,旨在借鉴 Transformer 的成功经验并结合 CNN 的优势。ConvNeXt 通过引入一系列现代化的设计元素,如深度可分离卷积、残差连接、注意力机制等,提升了 CNN 的性能和效率。

ConvNeXt 的主要特点包括:

  1. 深度可分离卷积:减少计算量和参数数量,提高模型效率。

  2. 残差连接:促进信息流动,缓解梯度消失问题。

  3. 注意力机制:增强模型的全局建模能力。

ConvNeXt 在多个视觉基准测试中取得了与 Transformer 架构相媲美的性能,证明了 CNN 在现代视觉任务中的竞争力。

二、CNN

CNN(卷积神经网络)是计算机视觉领域的传统架构,它通过卷积层、池化层和全连接层来提取图像的特征。CNN 的主要特点包括:

  1. 卷积层:使用卷积核提取图像的局部特征。

  2. 池化层:对特征进行下采样,减少计算量和参数数量。

  3. 全连接层:对特征进行分类或回归。

尽管 Transformer 架构在近年来取得了显著进展,但 CNN 仍然是许多视觉任务的首选架构,尤其是在实时性要求较高的场景中。

三、MLP

(一)MLP-Mixer

MLP-Mixer 是一种基于多层感知机(MLP)的新型架构,用于图像识别任务。它通过使用两个不同类型的 MLP 层(通道混合和空间混合)来捕获图像的全局信息。

MLP-Mixer 的主要特点包括:

  1. 通道混合:在通道维度上进行信息混合。

  2. 空间混合:在空间维度上进行信息混合。

MLP-Mixer 展示了在没有卷积或自注意力机制的情况下,仅使用 MLP 也可以实现有效的图像识别。

(二)MetaFormer

MetaFormer 是一种通用的 Transformer 架构,旨在为不同的视觉任务提供统一的解决方案。它通过引入元学习的思想,使模型能够自适应地调整其结构和参数。

MetaFormer 的主要特点包括:

  1. 元学习:通过元学习算法优化模型的初始化和参数更新。

  2. 灵活架构:支持多种视觉任务,如图像分类、目标检测、语义分割等。

MetaFormer 为 Transformer 架构在计算机视觉领域的应用提供了新的思路和方法。

在图片识别领域,Transformer 架构通过 ViT、Swin-Transformer 等模型引入了新的思路和方法。同时,CNN 架构也在不断演进,ConvNeXt 等新型 CNN 架构展现了强大的竞争力。此外,MLP 架构在 MLP-Mixer 和 MetaFormer 等模型中也取得了显著进展。这些架构的不断创新和融合,为图片识别技术的发展提供了强大的动力。未来,随着研究的深入,我们可以期待更多高效、强大的图片识别模型的出现。

### 融合Transformer与CNN的方法 为了提升模型性能并充分利用两者的优势,研究人员提出了多种将Transformer与CNN相结合的方式。一种有效的方法是在网络结构中引入混合模块,使二者能够协同工作。 #### 方法一:特征提取阶段的融合 可以在早期通过CNN来捕捉局部空间特征,随后利用Transformer进行全局依赖关系的学习。这种分层处理模式有助于提高图像分类任务中的表现[^1]。具体实现上,可以先采用几层标准卷积操作获取低层次的空间信息;之后再接入自注意力机制(Self-Attention),从而更好地理解整个输入序列之间的关联性。 ```python import torch.nn as nn class HybridModel(nn.Module): def __init__(self, num_classes=1000): super(HybridModel, self).__init__() # 使用预训练好的ResNet作为基础骨干网 self.backbone = torchvision.models.resnet50(pretrained=True) # 替换最后一层全连接层为适应新任务所需的类别数目的线性变换 self.fc = nn.Linear(self.backbone.fc.in_features, num_classes) # 添加transformer编码器部分 from transformers import ViTForImageClassification vit_config = { "image_size": 224, "patch_size": 16, "num_channels": 3, "embed_dim": 768, "depth": 12, "num_heads": 12, "mlp_ratio": 4., "qkv_bias": True, "drop_rate": .0, "attn_drop_rate": .0, "norm_layer_eps": 1e-6, "hidden_act": 'gelu', "initializer_range": 0.02, "layer_norm_eps": 1e-12, "is_decoder": False, "use_cache": False, "tie_word_embeddings": False} self.transformer_encoder = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224', config=vit_config).vit.encoder.layer[:int(vit_config['depth']/2)] def forward(self, x): features = self.backbone.conv1(x) features = self.backbone.bn1(features) features = self.backbone.relu(features) features = self.backbone.maxpool(features) features = self.backbone.layer1(features) features = self.backbone.layer2(features) features = self.backbone.layer3(features) features = self.backbone.layer4(features) b, c, fh, fw = features.shape patches = features.permute(0, 2, 3, 1).reshape(b, fh * fw, c) transformed_patches = self.transformer_encoder(patches)[0] pooled_output = torch.mean(transformed_patches, dim=1) logits = self.fc(pooled_output) return logits ``` #### 应用场景分析 在实际应用方面,这类混合型架构特别适用于那些既需要关注细节又需把握整体语义的任务: - **医学影像诊断**:对于X光片、CT扫描等医疗成像资料而言,不仅要有精准的位置定位能力,还要能识别复杂的病变模式; - **自动驾驶感知系统**:车辆周围环境监测涉及到远近物体的同时检测与跟踪,这要求算法具备强大的上下文理解和快速响应特性; - **遥感数据分析**:卫星图片往往覆盖广阔区域,内部包含大量不同尺度的目标对象,因此适合运用此类兼具细粒度解析力和宏观视角优势的技术方案来进行解译。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值