目录
1.题目描述
788. 逆序对的数量
给定一个长度为 nn 的整数数列,请你计算数列中的逆序对的数量。
逆序对的定义如下:对于数列的第 ii 个和第 jj 个元素,如果满足 i<ji<j 且 a[i]>a[j]a[i]>a[j],则其为一个逆序对;否则不是。
输入格式
第一行包含整数 nn,表示数列的长度。
第二行包含 nn 个整数,表示整个数列。
输出格式
输出一个整数,表示逆序对的个数。
数据范围
1≤n≤1000001≤n≤100000,
数列中的元素的取值范围 [1,109][1,109]。
输入样例:
6
2 3 4 5 6 1
输出样例:
5
2.AC
#include <iostream>
#include <cstdio>
using namespace std;
const int N = 1e5 + 10;
int n, ans;
int a[N], tmp[N];
void merge_sort(int a[], int l, int r) {
if (l >= r) return;
int mid = l+r>>1;
merge_sort(a, l, mid), merge_sort(a, mid+1, r);
int k = 0, i = l, j = mid+1;
while (i <= mid && j <= r)
if (a[i]<=a[j]) tmp[k++] = a[i++];
else {
ans += mid - i + 1;
tmp[k++] = a[j++];
}
while (i <= mid) tmp[k++] = a[i++];
while (j <= r) tmp[k++] = a[j++];
for (int i = l, j = 0; i <= r; i++, j++) a[i] = tmp[j];
}
int main () {
scanf("%d", &n);
for (int i = 0; i < n; i++) scanf("%d", &a[i]);
merge_sort(a, 0, n-1);
printf("%d", ans);
}