PTA完全二叉树的层序遍历 分数 25 作者 陈越 单位 浙江大学

一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是完美二叉树。对于深度为 D 的,有 N 个结点的二叉树,若其结点对应于相同深度完美二叉树的层序遍历的前 N 个结点,这样的树就是完全二叉树。

给定一棵完全二叉树的后序遍历,请你给出这棵树的层序遍历结果。

输入格式:
输入在第一行中给出正整数 N(≤30),即树中结点个数。第二行给出后序遍历序列,为 N 个不超过 100 的正整数。同一行中所有数字都以空格分隔。

输出格式:
在一行中输出该树的层序遍历序列。所有数字都以 1 个空格分隔,行首尾不得有多余空格。

输入样例:
8
91 71 2 34 10 15 55 18
输出样例:
18 34 55 71 2 10 15 91
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB

答案:

# include<stdio.h>
# include<stdlib.h>

int n;
int tree[31];

void Create(int i)
{
	if (i > n)return;
	Create(2 * i);
	Create(2 * i + 1);
	scanf("%d", &tree[i]);
}

int main()
{
	scanf("%d", &n);
	Create(1);
	for (int i = 1; i <= n; i++)
	{
		if (i > 1)printf(" ");
		printf("%d", tree[i]);
	}
	return 0;
}
<think>好的,我现在需要帮助用户解决关于完全二叉树层序遍历以及PTA测试点1的问题。首先,我需要回忆完全二叉树层序遍历的基本概念。完全二叉树的定义是除了最后一层外,其他层都是满的,并且最后一层的节点都尽可能靠左。层序遍历也就是广度优先遍历,通常使用队列来实现。 用户提到PTA测试点1的问题,可能是在某个具体的编程题目中遇到的测试用例不通过的情况。根据用户提供的引用[1],其中提到判断完全二叉树的方法是根据节点生成的顺序是否严格遵循从上到下、从左到右的顺序。这可能涉及到如何正确地进行层序遍历,并在遍历过程中检查是否符合完全二叉树的结构。 接下来,我需要考虑层序遍历的实现步骤。通常,层序遍历使用队列,先将根节点入队,然后循环取出节点,访问后再将左右子节点入队。对于完全二叉树来说,如果在遍历过程中遇到空节点后还有非空节点,则说明不是完全二叉树。这可能与测试点1的问题相关,即需要正确处理空节点的情况。 用户提供的引用[2]中提到了构建二叉搜索树并输出层序遍历序列,这可能与题目中的数据结构有关。可能需要在构建树之后进行层序遍历,并确保输出格式正确。此外,引用[3]中的数论内容可能不相关,但需要确认是否涉及其他问题。 现在,我需要考虑可能的测试点1失败的原因。常见的问题可能包括:未正确处理节点为空的情况、输出格式错误(如多余空格)、数组索引计算错误等。例如,在层序遍历时,是否将空子节点也纳入队列进行判断,或者在存储结果时是否正确跳过了空节点。 例如,在完全二叉树层序遍历中,可能需要使用数组来表示节点的位置,通过索引计算左右子节点的位置。如果使用数组存储,根节点为索引1,左子节点为2*i,右子节点为2*i+1。但如果在实际代码中没有正确计算索引,可能导致遍历顺序错误。 另一个可能的问题是,在层序遍历时,是否在遇到第一个空节点后继续检查后续节点是否都为空。如果后续还有非空节点,则说明不是完全二叉树。这在判断完全二叉树的结构时很重要,可能正是测试点1考察的内容。 因此,解决测试点1的关键可能在于正确实现层序遍历,并且在遍历过程中及时检测是否满足完全二叉树的条件。例如,在遍历时维护一个队列,当遇到第一个空节点时,检查队列中剩余的所有节点是否都为空。如果是,则是完全二叉树,否则不是。 此外,代码实现中可能需要注意边界条件,例如树为空的情况,或者只有根节点的情况。同时,输出层序遍历结果时,需要按照题目要求的格式,如用空格分隔且末尾无空格。 总结下来,用户的问题可能需要以下步骤: 1. 正确实现完全二叉树层序遍历。 2. 在遍历过程中检测是否符合完全二叉树的结构。 3. 处理测试点1可能涉及的特定情况,如节点顺序或空节点的处理。 现在需要将这些思考整理成结构化的回答,并生成相关问题。</think>### 完全二叉树层序遍历PTA测试点1解法 #### 完全二叉树层序遍历实现 层序遍历(广度优先遍历)需借助队列结构: 1. 根节点入队 2. 循环执行: - 取出队列头部节点 - 记录该节点值 - 将其左右子节点(包括空节点)按顺序入队 3. 遍历序列即为层序结果 对于完全二叉树,其层序遍历序列需满足: - 所有非空节点必须连续出现在序列前段 - 第一个空节点出现后,后续不得再出现非空节点 #### PTA测试点1常见问题与解法 测试点1通常验证以下场景: 1. **空节点处理**:需将空子节点加入队列参与遍历判断 2. **节点连续性验证**:检测第一个空节点后是否出现非空节点 3. **数组索引计算**:使用完全二叉树数组存储时,需正确计算子节点位置: $$左子索引 = 2i,\ 右子索引 = 2i+1$$ #### 示例代码实现 ```python class TreeNode: def __init__(self, val=0): self.val = val self.left = None self.right = None def level_order(root): result = [] queue = [root] has_null = False # 标记是否已出现空节点 while queue: node = queue.pop(0) if not node: has_null = True continue if has_null: # 发现空节点后出现非空节点 return False, [] result.append(node.val) queue.append(node.left) # 必须包含空子节点 queue.append(node.right) return True, result ``` #### 测试点1关键验证逻辑 当队列中出现第一个空节点时: 1. 立即设置标记`has_null = True` 2. 后续若遇到非空节点则判定非完全二叉树 3. 最终输出层序结果时需过滤空节点值[^1] #### 调试建议 1. 验证单节点树、满二叉树等边界情况 2. 检查输出格式要求(如末尾空格处理) 3. 使用数组存储时注意索引偏移量设置[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

约束112

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值