金融数据分析赛题2:保险反欺诈预测

本文介绍了一次金融数据分析赛题——保险反欺诈预测,详细阐述了数据分析流程,包括数据导入预处理、探索性分析、特征工程、模型训练与评估,以及模型解释。通过使用Python进行数据处理,探讨了数据分布、异常值、相关性、特征选择与构造、模型调参等方面,最终使用XGBoost进行模型构建,并利用SHAP进行模型解释。
摘要由CSDN通过智能技术生成

赛题背景

保险是重要的金融体系,对社会发展,民生保障起到重要作用。但是,保险欺诈近些年层出不穷,在某些险种上保险欺诈的金额已经占到了理赔金额的20%甚至更多。对保险欺诈的识别成为保险行业中的关键应用场景。

数据分析流程

本文将按照以下步骤进行数据分析:

目录

1.数据导入和预处理

2.数据探索性分析

数据分布和异常值

数据相关性和多重共线性

数据可视化

3.特征工程

特征选择

特征构造

特征编码

特征缩放

4.模型训练和评估

        模型选择

        模型验证

        模型调参

        模型评价

5.模型解释

总结

参考资料


1.数据导入和预处理

首先,我们需要导入一些常用的库,并读取训练集和测试集的数据:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score, accuracy_score, f1_score, confusion_matrix, classification_report
from xgboost import XGBClassifier
import shap

train = pd.read_csv("/train.csv")
test = pd.read_csv("/testA.csv")

然后,我们可以查看一下数据的基本信息,包括数据类型、缺失值、重复值、目标变量比例等:

# 查看数据类型和缺失值
print(train.info())
print(test.info())

# 输出
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 700 entries, 0 to 699
Data columns (total 39 columns):
 #   Column                       Non-Null Count  Dtype  
---  ------                       --------------  -----  
 0   policy_id                    700 non-null    int64  
 1   age                          700 non-null    int64  
 2   customer_months              700 non-null    int64  
 3   policy_bind_date             700 non-null    object 
 4   policy_state                 700 non-null    object 
 5   policy_csl                   700 non-null    object 
 6   policy_deductable            700 non-null    int64  
 7   policy_annual_premium        700 non-null    float64
 8   umbrella_limit               700 non-null    int64  
 9   insured_zip                  700 non-null    int64  
 10  insured_sex                  700 non-null    object 
 11  insured_education_level      700 non-null    object 
 12  insured_occupation           700 non-null    object 
 13  insured_hobbies              700 non-null    object 
 14  insured_relationship         700 non-null    object 
 15  capital-gains                700 non-null    int64  
 16  capital-loss                 700 non-null    int64  
 17  incident_date                700 non-null    object 
...
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 300 entries, 0 to 299
Data columns (total 38 columns):
 #   Column                       Non-Null Count  Dtype  
---  ------                       --------------  -----  
...
None

# 查看重复值
print(train.duplicated().sum())
print(test.duplicated().sum())

# 输出
0
0

# 查看目标变量比例
print(train['fraud'].value_counts())
print(train['fraud'].value_counts(normalize=True))

# 输出
0    518
1    182
Name: fraud, dtype: int64
0    0.74
1    0.26
Name: fraud, dtype: float64

从上面的输出可以看出,数据集没有缺失值和重复值,数据类型主要是数值型和对象型,目标变量是二分类变量,其中正例(欺诈)占26%,负例(非欺诈)占74%,存在一定的类别不平衡。

2.数据探索性分析

数据探索性分析(EDA)是指对数据进行初步的观察和分析,以了解数据的基本特征和规律,为后续的特征工程和模型训练提供依据。我们可以从以下几个方面进行EDA:

数据分布和异常值

我们可以使用describe方法查看数值型变量的基本统计量,包括均值、标准差、最小值、最大值、四分位数等:

# 查看数值型变量的基本统计量
print(train.describe())
print(test.describe())

# 输出
          policy_id         age  customer_months  policy_deductable  \
count 
  • 1
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 保险欺诈预测金融数据分析的重要应用之一。该赛题是基于保险数据集,旨在通过分析和挖掘数据特征,建立一个欺诈预测模型的基准线。 首先,我们需要对保险数据集进行预处理和清洗,包括处理缺失值、异常值和重复值等。然后,我们可以进行特征工程,提取出与欺诈相关的特征。常见的特征可以包括被保险人的年龄、职业、保险金额、历史理赔记录等信息。 接下来,我们可以选择合适的机器学习算法来构建预测模型。常用的算法包括逻辑回归、决策树、随机森林等。在构建模型之前,我们需要将数据集划分为训练集和测试集,用训练集进行模型训练,然后用测试集评估模型的性能。 评估模型的性能可以使用常见的指标,如准确率、精确率、召回率和F1值等。这些指标可以帮助我们评估模型的预测能力和误判率。 最后,我们需要对模型进行优化和改进。可以通过调整模型的参数、增加更多的特征或者尝试其他的机器学习算法来提高模型的预测性能。同时,对于不平衡样本问题,可以采用欠采样、过采样或者集成学习等方法来解决。 总结起来,保险欺诈预测的baseline建立包括数据预处理、特征工程、模型构建和优化等步骤。通过不断地优化和改进,我们可以建立一个有效的欺诈预测模型,提高保险公司的风险控制能力。 ### 回答2: 金融数据分析赛题2: 保险欺诈预测baseline是指在保险领域中,利用金融数据分析的方法来预测保险欺诈的基础模型。 保险欺诈预测是指利用大数据和机器学习算法等技术手段,对保险投保人的风险进行分析和预测,从而提高保险公司的风险管理能力,减少保险欺诈行为。 基于金融数据分析保险欺诈预测baseline主要包括以下几个步骤: 1. 数据收集:收集与保险欺诈相关的数据,包括投保人的基本信息、历史保险记录、理赔记录等,以及其他与保险欺诈相关的非保险数据。 2. 数据清洗和预处理:对收集到的数据进行清洗和预处理,包括去除异常值、缺失值处理、数据标准化等。确保数据的质量和可用性。 3. 特征工程:根据业务需求和领域知识,对数据进行特征提取和构建。包括基本特征、组合特征和衍生特征等。 4. 模型选择和训练:选择适用于保险欺诈预测机器学习模型,例如逻辑回归、决策树、支持向量机等。通过训练数据拟合模型,并进行调参和验证,得到最佳模型。 5. 模型评估和优化:利用评价指标如准确率、召回率、F1值等对模型进行评估,并进行模型优化和调整,提高模型的预测性能。 6. 模型应用和部署:将优化后的模型应用于实际场景,进行实时预测欺诈行为识别。并对模型进行监测和更新,保持模型的准确性和稳定性。 基于以上步骤,金融数据分析赛题2的保险欺诈预测baseline可以建立一个初步的保险欺诈预测模型,并得到一组基本的预测结果。然后可以根据比赛的具体要求和模型效果进行进一步的改进和优化,提高保险欺诈预测的准确性和稳定性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值