RC-u3 骰子游戏(raicom睿抗机器人CAIP编程技能赛)

文章讲述了如何通过编程模拟解决一个涉及骰子游戏的策略问题,着重于计算重骰以提升获胜等级的概率,以及提供了一段C++代码实现

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RC-u3 骰子游戏

题目描述

在某个游戏中有一个骰子游戏。在游戏中,你需要投掷 5 个标准六面骰子(骰子为一个正方体,6 个面上分别有1、2、3、4、5、6中的一个数字,骰子的质量均匀),投出的点数根据组合会获得一个“获胜等级”。获胜等级从高到低如下:

  • 五个同点数 - 五个骰子显示相同的点数
  • 四个同点数 - 四个骰子显示相同的点数
  • 葫芦 - 一对和一个三个同点数(如1、1、3、3、3)
  • 六高顺子 - 投出的点数为 2、3、4、5、6
  • 五高顺子 - 投出的点数为 1、2、3、4、5
  • 三个同点数 - 三个骰子显示相同的点数(如1、1、1、2、3)
  • 两对 - 投出的点数中有两对是相同的(如 1、1、2、2、3)
  • 一对 - 投出的点数有一对是相同的(如 1、1、2、3、4)
  • 无 - 除去以上的其他情况

给定你已经投出的一次结果,现在假设你可以选择任意个骰子重投一次,请问怎么样操作,才能最大化在重骰后获得更好的获胜等级的概率呢?

注意:更好的获胜等级需要严格地比当前的获胜等级更好,例如 1、1、2、2、3 如果重骰后变为 1、1、3、3、4 并不比当前的获胜等级更好。

输入格式:
输入第一行是一个正整数 T (1≤T≤10),表示接下来有多少组数据。
每组数据只有一行 5 个数字,表示第一次投出的 5 个骰子的点数。

输出格式:
对于每组数据输出三个整数,其中第一个整数为为了获得最大的概率需要重新骰几个骰子,后面的两个整数为重骰骰子后概率的最简分数,其中第二个整数为分子,第三个整数为分母。如果分子为 0,分母为 1。

如果有多种获得最大概率的情况,取重骰的骰子数最少的方案。

输入样例:

3
1 1 2 2 3
1 1 2 3 4
1 1 1 2 3

输出样例:

3 4 9
3 13 18
2 4 9

样例说明:
样例的第一组数据中,一种方案是:重骰最后三个骰子以获得最大的概率(只要重骰的有一个“1”或者三个均相等即可)。

题目解析

这个骰子游戏问题是一个概率与策略问题。玩家需要决定在给定的情况下,重新投掷多少个骰子可以最大化获得更高获胜等级的概率。题目给出了获胜等级的排序,从最好的"五个同点数"到最差的"无"。

输入格式描述了将要处理的数据组数T,以及每组数据的五个骰子点数。

输出格式要求输出三个整数:

  1. 需要重骰的骰子数量。
  2. 重骰后获得更好获胜等级的概率的分子。
  3. 重骰后获得更好获胜等级的概率的分母。

样例说明给出了具体的数据样例及其对应的输出解释。样例的输出是基于最优策略来计算获得更好获胜等级概率的。

例如第一个样例1 1 2 2 3,目前的获胜等级是“两对”。为了最大化获得更高等级的概率,玩家可以选择重骰后三个骰子(2, 2和3),因为假如这三个骰子中有一个是1,就能形成“三个同点数”,取得更高的等级。而如果三个骰子都是相同的点数,则可以形成“葫芦”或者“四个同点数”,这也是一个更高的等级。

输出结果3 4 9意味着:

  • 玩家需要重骰3个骰子。
  • 获得更好获胜等级的概率为4/9,即有4种情况会使得等级提高,总共9种可能的情况(因为一个骰子有6面,重骰三个就是(6^3 = 216)种可能,但是分子和分母已经被约分了)。

分析这个问题通常需要考虑当前的点数组合,计算不同选择下提升获胜等级的概率,并比较哪种方案的概率更高。同时,如果多个方案有相同的最大概率,则选择重骰骰子数最少的方案。

模拟

这段代码是一个用来解决特定骰子游戏问题的程序。现在我将逐行对其进行详细注释,以便你更好地理解其工作原理。

// 包含C++标准库,用于各种通用功能,如输入输出和排序
#include<bits/stdc++.h>
using namespace std;

// 全局变量声明
int n,k[6],level1,level2,t[6],f[32],r[32];

// 函数get_level:根据五个骰子的点数,返回当前获胜等级
int get_level(int s[])
{
   
    // 首先对骰子点数进行排序,以便于后续判断
    sort(s+1,s+1+5);
    // 下面的条件判断对应于题目中给出的获胜等级判断逻辑
    // 注意数组是从1开始索引的,符合题目输入习惯
    if(s[1]==s[2]&&s[2]==s[3]&&s[3]==s[4]&&s[4]==s[5])
        return 9; // 五个同点数
    if(s[1]==s[2]&&s[2]==s[3]&&s[
### 2024年编程道详情 #### JAVA编程技能 针对Java编程语言的比项目,参者需运用Java解决一系列算法和数据结构问题。此事旨在考察选手对Java的理解及其应用能力。完整的题目和试做案例可以在官方指定网站找到[^1]。 #### 开发者大(RAICOM) CAIP编程技能 该竞分为省级和国家级两个阶段。获得省级一等奖的参队伍有机会晋级全国总决。值得注意的是,部分费用可能由学校承担或提供奖励金给获奖学生;然而具体情况取决于各院校政策[^2]。 #### 输入输出实例分析 对于特定类型的输入样本,如`3 5 1 2 50 ...`等复杂组合的数据集,程序需要能够处理并返回预期的结果。这些测试用例通常用于验证解决方案的有效性和效率[^3]。 #### 数据结构与算法挑战 在某些情况下,当遇到成对节点之间的关系判定时,如果发现共同祖先,则表明形成了闭合路径(即环),此时应增加计数器值;反之则执行联合操作来构建新的连接关系[^4]。 ```java // Java code snippet demonstrating union-find algorithm to detect cycles. public class UnionFind { private int[] parent; public UnionFind(int n){ this.parent = new int[n]; for (int i=0; i<n; ++i) parent[i]=i; } public void union(int p, int q){ int rootP=find(p); int rootQ=find(q); if(rootP==rootQ)return; // Perform the union operation here... parent[rootP]=rootQ; } public boolean connected(int p,int q){ return find(p)==find(q); } private int find(int x){ while(x!=parent[x]){ parent[x]=parent[parent[x]]; // Path compression optimization x=parent[x]; } return x; } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

命运从未公平

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值