MMSE均衡器推导(二)

本文继续进行MMSE均衡器的理论推导。
本文需要根据上一节推导的一般MMSE均衡器表达式
x ^ n = E ( x n ) + Cov ( x n , z n ) Cov ( z n , z n ) − 1 ( z n − E ( z n ) ) \hat{x}_n = \mathbb{E}(x_n) + \text{Cov}(x_n, \mathbf{z}_n) \text{Cov}(\mathbf{z}_n, \mathbf{z}_n)^{-1} (\mathbf{z}_n - \mathbb{E}(\mathbf{z}_n)) x^n=E(xn)+Cov(xn,zn)Cov(zn,zn)1(znE(zn))
证明在ISI信道模型下,该式可转化为:
x ^ n = x ‾ n + v n s H ( σ w 2 I N + H V n H H ) − 1 ( z n − H x ‾ n ) \hat{x}_n=\overline{x}_n+v_n\mathbf{s}^H(\sigma_w^2\mathbf{I}_N+\mathbf{H}\mathbf{V}_n\mathbf{H}^H)^{-1}(\mathbf{z}_n-\mathbf{H}\overline{\mathbf{x}}_n) x^n=xn+vnsH(σw2IN+HVnHH)1(znHxn)
论文原文如下,可跳过

  1. Exact Implementation:
    The MMSE equalizer for this novel approach is an LE consisting of a length N N N filter with time-varying coefficients c n , k c_{n,k} cn,k, k = − N 1 , 1 − N 1 , … , N 2 , k=-N_1,1-N_1,…,N_2, k=N1,1N1,,N2,where N = N 1 + N 2 + 1 N=N_1+N_2+1 N=N1+N2+1, which are defined by the linear MMSE estimate x ^ n \hat{x}_n x^n of x n x_n xn given the observation z n ≜ [ z n − N 2 z n − N 2 + 1 ⋯ z n + N 1 ] T {{\bf{z}}_n} \triangleq {[{z_{n - {N_2}}}{z_{n - {N_2} + 1}} \cdots {z_{n + {N_1}}}]^T} zn[znN2znN2+1zn+N1]T:
    x ^ n = E ( x n ) + Cov ( x n , z n ) ⋅ Cov ( z n , z n ) − 1 ⋅ ( z n − E ( z n ) ) \hat{x}_n = \mathbb{E}(x_n) + \text{Cov}(x_n, \mathbf{z}_n) \cdot \text{Cov}(\mathbf{z}_n, \mathbf{z}_n)^{-1} \cdot \left( \mathbf{z}_n - \mathbb{E}(\mathbf{z}_n) \right) x^n=E(xn)+Cov(xn,zn)Cov(zn,zn)1(znE(zn))
    For data transmission over an ISI channel, this becomes
    x ^ n = x ‾ n + v n s H ( σ w 2 I N + H V n H H ) − 1 ( z n − H x ‾ n ) \hat{x}_n=\overline{x}_n+v_n\mathbf{s}^H(\sigma_w^2\mathbf{I}_N+\mathbf{H}\mathbf{V}_n\mathbf{H}^H)^{-1}(\mathbf{z}_n-\mathbf{H}\overline{\mathbf{x}}_n) x^n=xn+vnsH(σw2IN+HVnHH)1(znHxn)
    where H \mathbf{H} H is the N × ( N + M − 1 ) N\times(N+M-1) N×(N+M1) channel convolution matrix
    H ≜ [ h M − 1 h M − 2 ⋯ h 0 0 ⋯ 0 0 h M − 1 h M − 2 ⋯ h 0 0 ⋯ 0 ⋱ 0 ⋯ 0 h M − 1 h M − 2 ⋯ h 0 ] \mathbf{H}\triangleq\begin{bmatrix}h_{M-1} & h_{M-2} & \cdots & h_0 & 0 & \cdots & & 0\\ 0 & h_{M-1} & h_{M-2} & \cdots & h_0 & 0 & \cdots & 0\\ & & & \ddots & & & & \\ 0 & & \cdots & 0 & h_{M-1} & h_{M-2} & \cdots & h_0\end{bmatrix} H hM100hM2hM1hM2h000h0hM10hM200h0
    and
    x ‾ n ≜ [ x ‾ n − M − N 2 + 1 x ‾ n − M − N 2 + 2 ⋯ x ‾ n + N 1 ] T \overline{\mathbf{x}}_n\triangleq [\overline{x}_{n-M-N_2+1}\overline{x}_{n-M-N_2+2}\cdots\overline{x}_{n+N_1}]^T xn[xnMN2+1xnMN2+2xn+N1]T V n ≜ Cov ( x n , x n ) = D i a g ( v n − M − N 2 + 1 v n − M − N 2 + 2 ⋯ v n + N 1 ) \mathbf{V}_n\triangleq\text{Cov}(\mathbf{x}_n, \mathbf{x}_n)=\mathrm{Diag}(v_{n-M-N_2+1}v_{n-M-N_2+2}\cdots v_{n+N_1}) VnCov(xn,xn)=Diag(vnMN2+1vnMN2+2vn+N1) s ≜ H [ 0 1 × ( N 2 + M − 1 ) 1 0 1 × N 1 ] T \mathbf{s}\triangleq\mathbf{H}\left[\mathbf{0}_{1\times(N_2+M-1)}\quad1\quad\mathbf{0}_{1\times N_1}\right]^T sH[01×(N2+M1)101×N1]T

证明过程如下:

为了推导ISI信道模型下线性MMSE均衡器表达式,关键步骤在于推导 Cov ( z n , z n ) − 1 \text{Cov}(\mathbf{z}_n, \mathbf{z}_n)^{-1} Cov(zn,zn)1 Cov ( x n , z n ) \text{Cov}(x_n, \mathbf{z}_n) Cov(xn,zn)


1. 定义ISI信道模型

假设接收信号 z n \mathbf{z}_n zn 由以下模型生成:
z n = H x n + w n \mathbf{z}_n = \mathbf{H} \mathbf{x}_n + \mathbf{w}_n zn=Hxn+wn
其中:

  • H \mathbf{H} H N × ( N + M − 1 ) N \times (N + M - 1) N×(N+M1)信道卷积矩阵
    H ≜ [ h M − 1 h M − 2 ⋯ h 0 0 ⋯ 0 0 h M − 1 h M − 2 ⋯ h 0 0 ⋯ 0 ⋱ 0 ⋯ 0 h M − 1 h M − 2 ⋯ h 0 ] \mathbf{H}\triangleq\begin{bmatrix}h_{M-1} & h_{M-2} & \cdots & h_0 & 0 & \cdots & & 0\\ 0 & h_{M-1} & h_{M-2} & \cdots & h_0 & 0 & \cdots & 0\\ & & & \ddots & & & & \\ 0 & & \cdots & 0 & h_{M-1} & h_{M-2} & \cdots & h_0\end{bmatrix} H hM100hM2hM1hM2h000h0hM10hM200h0
  • x n = [ x n − M − N 2 + 1 , x n − M − N 2 + 2 , … , x n + N 1 ] T \mathbf{x}_n = [x_{n-M-N_2+1}, x_{n-M-N_2+2}, \dots, x_{n+N_1}]^T xn=[xnMN2+1,xnMN2+2,,xn+N1]T 是发送符号向量。
  • w n \mathbf{w}_n wn 0 0 0均值噪声向量, E [ w n ] = 0 \mathbb{E}[\mathbf{w}_n]=0 E[wn]=0
  • w n \mathbf{w}_n wn的协方差矩阵为 E [ w n w n H ] = σ w 2 I N \mathbb{E}[\mathbf{w}_n \mathbf{w}_n^H] = \sigma_w^2 \mathbf{I}_N E[wnwnH]=σw2IN,其中 I N \mathbf{I}_N IN N N N阶单位阵。
  • x ‾ n = E [ x n ] \overline{\mathbf{x}}_n = \mathbb{E}[\mathbf{x}_n] xn=E[xn] 是发送符号的均值向量。
  • V n ≜ Cov ( x n , x n ) = Diag ( v n − M − N 2 + 1 , … , v n + N 1 ) \mathbf{V}_n \triangleq \text{Cov}(\mathbf{x}_n, \mathbf{x}_n) = \text{Diag}(v_{n-M-N_2+1}, \dots, v_{n+N_1}) VnCov(xn,xn)=Diag(vnMN2+1,,vn+N1) 是对角协方差矩阵(符号独立)。

2. 计算 Cov ( z n , z n ) \text{Cov}(\mathbf{z}_n, \mathbf{z}_n) Cov(zn,zn)

Cov ( z n , z n ) = H Cov ( x n , x n ) H H + Cov ( w n , w n ) \text{Cov}(\mathbf{z}_n, \mathbf{z}_n) = \mathbf{H} \text{Cov}(\mathbf{x}_n, \mathbf{x}_n) \mathbf{H}^H + \text{Cov}(\mathbf{w}_n, \mathbf{w}_n) Cov(zn,zn)=HCov(xn,xn)HH+Cov(wn,wn)

计算噪声协方差矩阵
Cov ( w n , w n ) = E [ w n w n H ] = σ w 2 I N \text{Cov}(\mathbf{w}_n, \mathbf{w}_n)=\mathbb{E}[\mathbf{w}_n \mathbf{w}_n^H] = \sigma_w^2 \mathbf{I}_N Cov(wn,wn)=E[wnwnH]=σw2IN
因此
Cov ( z n , z n ) = H V n H H + σ w 2 I N \text{Cov}(\mathbf{z}_n, \mathbf{z}_n)= \mathbf{H} \mathbf{V}_n \mathbf{H}^H + \sigma_w^2 \mathbf{I}_N Cov(zn,zn)=HVnHH+σw2IN
该式中前一项代表符号间干扰,后一项代表噪声。


3.计算 Cov ( x n , z n ) \text{Cov}(x_n, \mathbf{z}_n) Cov(xn,zn)

  1. 展开协方差
    Cov ( x n , z n ) = E [ ( x n − x ‾ n ) ( z n − E [ z n ] ) H ] \text{Cov}(x_n, \mathbf{z}_n) = \mathbb{E}\left[ (x_n - \overline{x}_n)(\mathbf{z}_n - \mathbb{E}[\mathbf{z}_n])^H \right] Cov(xn,zn)=E[(xnxn)(znE[zn])H] 代入 z n = H x n + w n \mathbf{z}_n = \mathbf{H} \mathbf{x}_n + \mathbf{w}_n zn=Hxn+wn
    = E [ ( x n − x ‾ n ) ( H x n + w n − E [ z n ] ) H ] = \mathbb{E}\left[ (x_n - \overline{x}_n) \left( \mathbf{H} \mathbf{x}_n+ \mathbf{w}_n-\mathbb{E}[\mathbf{z}_n]\right)^H \right] =E[(xnxn)(Hxn+wnE[zn])H]
    由于 E ( z n ) = H E ( x n ) + E [ w n ] = H x ‾ n \mathbb{E}(\mathbf{z}_n) = \mathbf{H} \mathbb{E}(\mathbf{x}_n)+\mathbb{E}[\mathbf{w}_n] = \mathbf{H} \overline{\mathbf{x}}_n E(zn)=HE(xn)+E[wn]=Hxn,代入得
    = E [ ( x n − x ‾ n ) ( H ( x n − x ‾ n ) + w n ) H ] = \mathbb{E}\left[ (x_n - \overline{x}_n) \left( \mathbf{H} (\mathbf{x}_n - \overline{\mathbf{x}}_n) + \mathbf{w}_n \right)^H \right] =E[(xnxn)(H(xnxn)+wn)H] = E [ ( x n − x ‾ n ) ( ( x n − x ‾ n ) H H H + w n H ) ] = \mathbb{E}\left[ (x_n - \overline{x}_n) \left((\mathbf{x}_n - \overline{\mathbf{x}}_n)^H\mathbf{H}^H + \mathbf{w}_n^H \right) \right] =E[(xnxn)((xnxn)HHH+wnH)] = E [ ( x n − x ‾ n ) ( x n − x ‾ n ) H H H + ( x n − x ‾ n ) w n H ] = \mathbb{E}\left[ (x_n - \overline{x}_n) (\mathbf{x}_n - \overline{\mathbf{x}}_n)^H\mathbf{H}^H + (x_n - \overline{x}_n)\mathbf{w}_n^H \right] =E[(xnxn)(xnxn)HHH+(xnxn)wnH] = E [ ( x n − x ‾ n ) ( x n − x ‾ n ) H H H ] + E [ ( x n − x ‾ n ) w n H ] = \mathbb{E}\left[ (x_n - \overline{x}_n) (\mathbf{x}_n - \overline{\mathbf{x}}_n)^H\mathbf{H}^H\right] + \mathbb{E}\left[ (x_n - \overline{x}_n)\mathbf{w}_n^H \right] =E[(xnxn)(xnxn)HHH]+E[(xnxn)wnH]
    由于 x n x_n xn 与噪声 w n \mathbf{w}_n wn 独立,交叉项 E [ ( x n − x ‾ n ) w n H ] = 0 \mathbb{E}\left[ (x_n - \overline{x}_n) \mathbf{w}_n^H \right] = 0 E[(xnxn)wnH]=0,因此:
    Cov ( x n , z n ) = E [ ( x n − x ‾ n ) ( x n − x ‾ n ) H ] H H \text{Cov}(x_n, \mathbf{z}_n)= \mathbb{E}\left[ (x_n - \overline{x}_n) (\mathbf{x}_n - \overline{\mathbf{x}}_n)^H\right]\mathbf{H}^H Cov(xn,zn)=E[(xnxn)(xnxn)H]HH

  2. 利用符号独立性
    x n \mathbf{x}_n xn 的协方差为对角矩阵 V n \mathbf{V}_n Vn,则 x n x_n xn 的方差为 v n v_n vn
    x n x_n xn x n \mathbf{x}_n xn 中的位置对应单位向量 e \mathbf{e} e,则:
    e = [ 0 , … , 1 , … , 0 ] T = [ 0 1 × ( N 2 + M − 1 ) 1 0 1 × N 1 ] T \mathbf{e} = [0, \dots, 1, \dots, 0]^T=\left[\mathbf{0}_{1\times(N_2+M-1)}\quad1\quad\mathbf{0}_{1\times N_1}\right]^T e=[0,,1,,0]T=[01×(N2+M1)101×N1]T
    定义零均值变量 x ~ n = x n − x ‾ n \tilde{x}_n=x_n - \overline{x}_n x~n=xnxn
    类似地,再定义零均值符号向量:
    x ~ n = x n − x ‾ n = [ x ~ n − M − N 2 + 1 , … , x ~ n , … , x ~ n + N 1 ] T \tilde{\mathbf{x}}_n = \mathbf{x}_n - \overline{\mathbf{x}}_n = [\tilde{x}_{n-M-N_2+1}, \dots,\tilde{x}_n,\dots ,\tilde{x}_{n+N_1}]^T x~n=xnxn=[x~nMN2+1,,x~n,,x~n+N1]T
    其中 x ~ i = x i − x ‾ i \tilde{x}_i = x_i - \overline{x}_i x~i=xixi,满足 E [ x ~ i ] = 0 \mathbb{E}[\tilde{x}_i] = 0 E[x~i]=0 E [ x ~ i x ~ j ∗ ] = { v i , i = j 0 , i ≠ j \mathbb{E}[\tilde{x}_i \tilde{x}_j^*] = \begin{cases} v_i, & i=j \\ 0, & i \neq j \end{cases} E[x~ix~j]={vi,0,i=ji=j
    则代求协方差变为 Cov ( x n , z n ) = E [ x ~ n x ~ n H ] H H \text{Cov}(x_n, \mathbf{z}_n)= \mathbb{E}\left[ \tilde{x}_n\tilde{\mathbf{x}}_n^H \right] \mathbf{H}^H Cov(xn,zn)=E[x~nx~nH]HH
    E [ x ~ n x ~ n H ] = E [ x ~ n ⋅ [ x ~ n − M − N 2 + 1 ∗ , … , x ~ n ∗ , … , x ~ n + N 1 ∗ ] ] \mathbb{E}\left[ \tilde{x}_n\tilde{\mathbf{x}}_n^H \right] = \mathbb{E}\left[ \tilde{x}_n\cdot\begin{bmatrix} \tilde{x}_{n-M-N_2+1}^* , \dots,\tilde{x}_n^*,\dots ,\tilde{x}_{n+N_1}^* \end{bmatrix} \right] E[x~nx~nH]=E[x~n[x~nMN2+1,,x~n,,x~n+N1]]
    由于符号之间是相互独立的, E [ x ~ i x ~ j ∗ ] = { v i , i = j 0 , i ≠ j \mathbb{E}[\tilde{x}_i \tilde{x}_j^*] = \begin{cases} v_i, & i=j \\ 0, & i \neq j \end{cases} E[x~ix~j]={vi,0,i=ji=j

    E [ x ~ n x ~ n H ] = E [ [ 0 , … , v n , … , 0 ] ] \mathbb{E}\left[ \tilde{x}_n\tilde{\mathbf{x}}_n^H \right] = \mathbb{E}\left[ \begin{bmatrix} 0 , \dots,v_n,\dots ,0 \end{bmatrix} \right] E[x~nx~nH]=E[[0,,vn,,0]] = e T ⋅ v n = \mathbf{e}^T \cdot v_n =eTvn
    代入协方差化简得 Cov ( x n , z n ) = v n ⋅ e T H H = v n ⋅ s H \text{Cov}(x_n, \mathbf{z}_n)= v_n \cdot \mathbf{e}^T \mathbf{H}^H= v_n \cdot \mathbf{s}^H Cov(xn,zn)=vneTHH=vnsH
    其中 s ≜ H e \mathbf{s}\triangleq\mathbf{H} \mathbf{e} sHe 是信道对 x n x_n xn 的响应向量。
    s ≜ H [ 0 1 × ( N 2 + M − 1 ) 1 0 1 × N 1 ] T \mathbf{s} \triangleq\mathbf{H}\left[\mathbf{0}_{1\times(N_2+M-1)}\quad1\quad\mathbf{0}_{1\times N_1}\right]^T sH[01×(N2+M1)101×N1]T

  • s = H e \mathbf{s} = \mathbf{H} \mathbf{e} s=He 表示信道对符号 x n x_n xn 的冲激响应。在卷积矩阵 H \mathbf{H} H 中, e \mathbf{e} e 对应 x n x_n xn 在发送向量 x n \mathbf{x}_n xn 中的位置,因此 s \mathbf{s} s x n x_n xn 对接收信号 z n \mathbf{z}_n zn 的贡献。
  • Cov ( x n , z n ) \text{Cov}(x_n, \mathbf{z}_n) Cov(xn,zn)的表达式说明,由于符号独立性,只有 x n x_n xn 的方差 v n v_n vn 对协方差有贡献,且通过信道响应 s \mathbf{s} s 映射到接收端。

4. 代入一般MMSE公式

将上述结果代入原式:
x ^ n = x ‾ n + Cov ( x n , z n ) ⋅ Cov ( z n , z n ) − 1 ⋅ ( z n − H x ‾ n ) = x ‾ n + v n s H ( σ w 2 I N + H V n H H ) − 1 ( z n − H x ‾ n ) \begin{aligned} \hat{x}_n &= \overline{x}_n + \text{Cov}(x_n, \mathbf{z}_n) \cdot \text{Cov}(\mathbf{z}_n, \mathbf{z}_n)^{-1} \cdot \left( \mathbf{z}_n - \mathbf{H} \overline{\mathbf{x}}_n \right) \\ &= \overline{x}_n + v_n \mathbf{s}^H \left( \sigma_w^2 \mathbf{I}_N + \mathbf{H} \mathbf{V}_n \mathbf{H}^H \right)^{-1} \left( \mathbf{z}_n - \mathbf{H} \overline{\mathbf{x}}_n \right) \end{aligned} x^n=xn+Cov(xn,zn)Cov(zn,zn)1(znHxn)=xn+vnsH(σw2IN+HVnHH)1(znHxn)
证毕.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值