X-AnyLabeling 配合yolov5或者yolo v8,使用yolo标签标注,半自动化数据标注

原理就是用小数据集的yolo权重识别大数据集,并导出标注文件,用x-anylabeling进行检查和修改

1.下载X-anylabeling

下载地址如下:GitHub - CVHub520/X-AnyLabeling: Effortless data labeling with AI support from Segment Anything and other awesome models.

在解压后文件夹打开终端,并安装所需的环境依赖:

pip install -r requirements.txt

如果下载速度缓慢,可以临时使用清华源下载

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

安装完成后在项目终端运行app.py

python anylabeling/app.py

2. 在yolov5里使用小部分数据集训练模型,并将模型在更大的数据集里进行测试(关键)

此处我们根据几十张手动标注的少量数据集来训练好了 权重文件。并将source地址选为大量数据集的那个地址

将第十行参数修改为store_false,训练更大的数据集,得到的模型会生成标签文件和带有识别框的源文件。此处我们需要的是这个标签文件。

3.打开X-labeling进行标注

首先在X-AnyLabeling-main\assets文件夹下找到classes.txt文件,并将文件修改为自己的识别标签,注意顺序。(也可以自己创建一个classes.txt文件,按顺序输入标签名即可)

 

首先导入图片

选择刚才的yolov5测试集地址也就是大量数据集的那个地址(source地址)导入图片

 选择输出目录

之后点击导入-导入yolo水平框标签,导入刚才的classes.txt文件和yolov5识别生成的标签文件

 

classes.txt

labels文件

选择覆盖。

这样便由少数据集训练结果在大量数据集上打好了标签,之后查找标签错误的文件进行修改即可

导出标签:

 

点击导出yolo水平标签

同样选择classes.txt文件

导出标签文件即可

 

### 如何在 X-AnyLabeling 中加载 YOLO 格式的标签文件 为了能够在 X-AnyLabeling 中成功加载 YOLO 格式的标签文件,需遵循特定的操作流程。 #### 准备工作 确保 `classes.txt` 文件已按照需求编辑完毕并放置于正确路径下。此文件定义了所有可能的对象类别名称及其对应的索引编号[^1]。 ```plaintext cat dog person ... ``` #### 加载已有数据集 当首次启动应用时,在主界面通过指定图像所在的文件夹来初始化项目环境。此时如果该文件夹内存在与图片同名但扩展名为 `.txt` 的文件,则会被视为潜在的YOLO格式标签文件而被尝试解析。 对于每张带有相应`.txt`标签文件的图像而言,其内容应严格遵照YOLO标准编写: - 每一行为一个目标物体的信息记录; - 行首数字代表所属类别的索引号(基于`classes.txt`中的排列次序),后续四个浮点数依次表示边界框中心坐标(x_center,y_center)以及宽高(w,h),这些数值均已被标准化至(0~1)区间范围内; 例如: ```text 0 0.579483 0.526042 0.375000 0.468750 1 0.281250 0.604167 0.187500 0.354167 ``` 上述例子意味着第一行描述了一个位于图像中央偏右位置、大小约为整个画幅三分之一的一个属于第0类(`cat`)的目标物;第二行则指出了另一个较小尺寸且靠近左侧边缘处的第1类(`dog`)实例。 一旦完成以上设置之后重新加载含有匹配良好之YOLO标签文本的数据集,X-AnyLabeling 就能够正常显示预先设定好的标注信息了[^2]。 #### 使用预训练模型辅助标注 除了直接导入现有的YOLO标签外,还可以利用内置或外部提供的预训练检测模型来进行初步预测,从而实现半自动化的高效作业模式。具体操作是在菜单栏选择合适的算法框架如YOLO系列版本后上传自定义权重参数文件(.pt,.pth等),随后一键处理批量待标记样本集合。这一步骤有助于快速获取初始版面注解草稿,后期只需人工校验修正少量偏差之处即可[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

顾煜er

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值