YOLO11改进 | 自定义数据集训练 | VMamba助力YOLO11检测(附完整代码 + 修改教程 + 运行教程+个人数据标注教程+半自动标注教程+训练结果可视化教程+部署教程)

目录

一、本文介绍

二、vision mamba结构与原理

三、yolov11与VMamba结合修改教程

3.1 核心代码文件的创建与添加

3.1.1 vmamba.py文件添加

3.1.2  __init__.py文件添加

3.2 yolov11 的tasks.py 文件修改

3.2.1 导入vmamba模块

3.2.2 修改并添加vmamba模块

3.3  模型配置文件添加

3.3.1 构建模型配置文件yolo11-vmambanet.yaml

3.3.2 配置网络结构

四、自定义数据集

4.1数据标注

4.2 数据格式转换

4.4 训练数据集配置文件添加

五、模型训练

5.1 训练文件的创建与配置

5.2 训练过程展示

六、半自动标注

6.1.加载训练权重进行待标注数据集的推理

6.2.将推理结果txt转换为xml标签文件

6.3.打开标注软件labelimg,微调标注

七、训练结果可视化

7.1多训练结果对比

7.2可视化热力图

7.3计算推理效率 FPS

八、模型部署

8.1 web网页部署

九、总结


一、本文介绍

本文提出了一种名为Mamba-UNet的新型网络架构,该架构通过结合U-Net与Mamba架构的优势,旨在提升医学图像分割的性能。在MRI心脏分割数据集上的实验结果表明,Mamba-UNet相较于传统的UNet和先进的SwinUNet,展现出了更优越的性能。此外,本文还详细探讨了如何将Mamba注意力模块应用于Yolo11,创造出Yolo11-Mamba网络,该网络在全局特征捕捉能力上得到了显著提升。此外、还提供将其与YOLO11等目标检测模型有效结合改进的方法,并对自定义数据集的训练以及半自动化标注的方法进行简单介绍,帮助力读者快速在自己的数据集上进行实验与应用。

二、vision mamba结构与原理

        Mamba成功的关键在于S6模型,该模型为NLP任务设计,通过选择性扫描空间状态序列模型,将二次复杂度降低至线性。但由于视觉信号(如图像)的无序性,Mamba的S6模型不能直接应用,

设计了 2D-selective-scan(SS2D)模块。

图片

        如上图所示,SS2D由三个部分组成:扫描expanding操作、S6块操作和扫描merging操作。如图2(a)所示,扫描expanding操作沿着四个不同的方向(左上到右下、左下到右上、右下到左上、右上到左下)将输入图像展开成序列。然后通过S6块对这些序列进行特征提取,确保各个方向的信息被彻底扫描,从而捕获不同的特征。随后,如图2(b)所示,扫描merging操作将来自四个方向的序列相加并合并,将输出图像恢复为与输入相同的大小。源自Mamba[16]的S6块在S4[17]之上引入了一种选择机制,通过根据输入调整SSM的参数。这使模型能够区分并保留相关信息,同时过滤掉不相关的信息。

图片

上图为本文提出的 VMamba 结构图。VMamba 的整体框架与主流的视觉模型类似,如上图 (b)所示。经过Layer Normalization后,输入被分成两个分支。在第一个分支中,输入经过一个线性层,然后是一个激活函数。在第二个分支中,输入通过线性层、深度可分离卷积和激活函数进行处理,然后输入到2D选择性扫描(SS2D)模块中进行进一步的特征提取。随后,使用Layer Normalization对特征进行归一化,然后使用第一个分支的输出执行逐元素的生成,以合并两条路径。最后,使用线性层混合特征,并将此结果与残差连接相结合,形成VSS块的输出。本文默认采用SiLU作为激活函数。

三、yolov11与VMamba结合修改教程

基础环境的安装

conda create -n vmunet python=3.8
conda activate vmunet
pip install torch==1.13.0 torchvision==0.14.0 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu117
pip install packaging
pip install timm==0.4.12
pip install pytest chardet yacs termcolor
pip install submitit tensorboardX
pip install triton==2.0.0
pip install causal_conv1d==1.0.0  # causal_conv1d-1.0.0+cu118torch1.13cxx11abiFALSE-cp38-cp38-linux_x86_64.whl
pip install mamba_ssm==1.0.1  # mmamba_ssm-1.0.1+cu118torch1.13cxx11abiFALSE-cp38-cp38-linux_x86_64.whl
pip install scikit-learn matplotlib thop h5py SimpleITK scikit-image medpy yacs

3.1 核心代码文件的创建与添加

3.1.1 vmamba.py文件添加

找到ultralytics/nn文件夹,建立Addmoudules文件夹,并在该文件夹下建立vmamba.py文件,如下图。

vmamba.py添加核心代码,如下

class VSSM(nn.Module):
    def __init__(self, patch_size=4, in_chans=3, num_classes=1000, depths=[2, 2, 9, 2], depths_decoder=[2, 9, 2, 2],
                 dims=[96, 192, 384, 768], dims_decoder=[768, 384, 192, 96], d_state=16, drop_rate=0.,
                 attn_drop_rate=0., drop_path_rate=0.1,
                 norm_layer=nn.LayerNorm, patch_norm=True,
                 use_checkpoint=False, **kwargs):
        super().__init__()
        self.num_classes = num_classes
        self.num_layers = len(depths)
        if isinstance(dims, int):
            dims = [int(dims * 2 ** i_layer) for i_layer in range(self.num_layers)]
        self.embed_dim = dims[0]
        self.num_features = dims[-1]
        self.dims = dims

        self.patch_embed = PatchEmbed2D(patch_size=patch_size, in_chans=in_chans, embed_dim=self.embed_dim,
                                        norm_layer=norm_layer if patch_norm else None)

        # WASTED absolute position embedding ======================
        self.ape = False
        # self.ape = False
        # drop_rate = 0.0
        if self.ape:
 
.........

注:全部代码私信博主获取

3.1.2  __init__.py文件添加

在Addmoudules文件夹建立__init__.py文件,如下图

__init__.py文件 添加代码,如下

from .vmamba import *

3.2 yolov11 的tasks.py 文件修改

找到ultralytics/nn文件夹下的task.py 文件并打开

3.2.1 导入vmamba模块

3.2.2 修改并添加vmamba模块

task.py 343 行 修改

task.py,1002 添加MambaLayer

注:其中红色框为添加部分

3.3  模型配置文件添加

3.3.1 构建模型配置文件yolo11-vmambanet.yaml

找到ultralytics/cfg/models/v8文件夹,并在该文件夹下建立yolo11-vmambanet.yaml文件,如下图

3.3.2 配置网络结构
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [ -1, 1, Conv, [ 64, 3, 2 ] ]  # 0-P1/2      # 0.  320
  - [ -1, 1, Conv, [ 128, 3, 2 ] ]  # 1-P2/4     # 1.  160
  - [ -1, 3, MambaLayer, [ 128 ] ]                # 2.  160
  - [ -1, 1, Conv, [ 256, 3, 2 ] ]  # 3-P3/8     # 3.  80
  - [ -1, 6, MambaLayer, [ 256 ] ]                # 4.  80
  - [ -1, 1, Conv, [ 512, 3, 2 ] ]  # 5-P4/16    # 5.  40
  - [ -1, 6, MambaLayer, [ 512 ] ]                # 6.  40
  - [ -1, 1, Conv, [ 1024, 3, 2 ] ]  # 7-P5/32   # 7.  20S
  - [ -1, 3, MambaLayer, [ 1024 ] ]               # 8.  20
  - [ -1, 1, SPPF, [ 1024, 5 ] ]  # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)

注:全部代码私信博主获取

四、自定义数据集

4.1数据标注

新建两个文件夹如下,其中images用于保存待标注的图片数据,Annotations用于保存标注过后xml格式的标签文件

打开 labelimg 标注工具(标注工具自行检索下载),如下图,配置images,Annotations文件夹所在路径,然后进行标注

标注后将在Annotations文件夹下生成如下文件

4.2 数据格式转换

如下图新建label文件夹,用于保存由Annotations文件夹下的xml标签文件转换后,适合yolov8训练的txt格式的标签文件

定位至Yolo11_Dataset_Processing/xmls2yolo.py文件并打开,再定位如下图到红色框处,需配置检测的标签列表,以及xml标签路径(Annotations),转换后txt格式的标签路径(label)。

配置完成后运行xmls2yolo.py,即可在label文件夹下生成所需txt格式的标签文件,如下图

注:全部代码联系博主获得

4.3 数据集划分

定位至Yolo11_Dataset_Processing/dataset_split.py文件,打开并定位至红色框处,需配置

classes、source_file_path 、images_file_path ,如下图所示

配置完成后运行dataset_split.py,即可在lmages同级文件夹下生成划分后的训练集、验证集、测试集,如下图

4.4 训练数据集配置文件添加

定位至ultralytics/cfg/datasets文件夹下,新建训练数据集的配置文件a_sleep.yaml如下图

在a_sleep.yaml 文件中进行训练、验证、测试数据的配置,如下图

注:若有多个训练、验证、测试数据,只需在对应位置继续添加即可,参考注释掉的部分

五、模型训练

5.1 训练文件的创建与配置

在ultralytics的同级目录处创建train.py 文件

点击打开train.py文件,如下图需配置 1,与 2处,其中1配置的是本文3.3构建模型配置文件yolov8-vmambanet.yaml。2处配置的是本文4.4 新建训练数据集的配置文件a_sleep.yaml。

5.2 训练过程展示

六、半自动标注

半自动化标注,解决的是标注数据量庞大,难以人工从头进行一一标注的问题。主要步骤是,先标注两千张数据,进行模型训练,然后用训练好的模型,对剩下未标注的数据集进行推理,得到模型推理后的结果,将这些结果转换为xml格式的标签文件。最好利用标注软件labelimg打开,就得到大量已经有预标注的图片,后续工作仅需微调这些标注即可,大大减少了标注的工作量。以下是半自动化标注流程

6.1.加载训练权重进行待标注数据集的推理

在ultralytics的同级目录处创建predict.py 文件,如下图中1处所示,并在其中配置训练好的权重模型、待推理标注的图片文件夹路径,以及是否将推理结果保存为txt文件,如下图中2、3、4处所示.配置后点击运行

运行结束后将在ultralytics-main/runs/detect/predict/labels/目录下生成txt标签文件

6.2.将推理结果txt转换为xml标签文件

在Yolov11_Dataset_Processing/的目录下创建yolo2xml.py文件,如下图中1处所示,并在其中配置训练好的图片路径、推理后的txt路径,转换为xml待微调的标签路径,以及类别对照字典,如下图中2、3、4、5处所示.配置后点击运行

6.3.打开标注软件labelimg,微调标注

打开labelimg后配置1与2 两个地方,1是图片文件夹路径,2是转换为xml待微调的标签路径。完成后图片将生成对应的标注框,若标注准确就跳转到下一张图,不准确则调整

七、训练结果可视化

7.1多训练结果对比

在ultralytics的同级目录处创建Multi_Training_Results_Comparison.py文件,如下图中1处所示,并在其中配置训练好训练结果保持时指定的路径以及需要对比的哪几次训练,如下图中2、3处所示,对比的是exp2、与exp4的训练结果,配置后点击运行

运行后将在运行文件的同级目录下生成对比后的结果图metrics_curves.png、loss_curves.png

​        

7.2可视化热力图

在ultralytics的同级目录处创建Multi_Training_Results_Comparison.py文件,如下图中1处所示,并在其中2处配置相关参数,参数对照信息如下

配置后点击运行

运行后在同级目录下找到result文件夹将获得对应热力图如下

7.3计算推理效率 FPS

在ultralytics的同级目录处创建yolov8_Inference_Speed_Test.py文件,如下图中1处所示,并在其中2处配置相关参数,参数对照信息如下

配置后 命令行运行 python yolov8_Inference_Speed_Test.py 命令,得下图

八、模型部署

8.1 web网页部署

在ultralytics的同级目录处创建YOLOv11-web-app-master文件夹,如下图中1处所示,并在2处的detection目录下放置用于推理的模型。

完成以上配置即可在命令行运行

streamlit run app.py

得到

将上述http地址输入浏览器搜索栏,得到

如上图,web app 应用的操作流程是,通过1处下拉栏,选择上面配置的detection目录下放置用于推理的模型;然后通过2处选择推理的类型,支持视频流和图片;接着通过3选择本地图片或者视频进行推理,最后点击4执行推理。

九、总结


注:上述构建自定义的数据的方法,针对所有yolo系列模型检测数据构建与方法均有效。全部代码与数据集私信博主获取。结合全部代码阅读本博客更为清晰明了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值