分治法求最近点对(Closest Pair of Points)

分治法求最近点对(Closest Pair of Points)是一种解决平面上最近点对问题的常用算法,其基本思想如下:

  1. 首先,将所有的点按照 x 坐标进行排序,得到一个按照 x 坐标有序的点集。
  2. 然后利用分治法,将平面上的点集分成两部分,分别找到左右两边的最近点对。
  3. 记左半部分的最近点对为 (p1, q1),右半部分的最近点对为 (p2, q2),则距离 d1 = dist(p1, q1) 和 d2 = dist(p2, q2) 是左右两边的最近点对的距离。
  4. 然后,考虑跨分界线的点对,对于每一个点 p,只需要考虑距离 p 在 x 轴上距离小于 d 的点 q,计算这样的点对的距离,并选择最小的距离作为最终的跨分界线的最近点对距离 dmin。
  5. 最后,比较 d1、d2 和 dmin,取最小值作为最终的最近点对的距离。

在实际实现中,可以采用递归算法来实现该思想。具体实现时,需要注意合并过程中的复杂度控制,通常可以在合并步骤中利用空间换时间的思想来降低算法的复杂度。

分治法求最近点对的时间复杂度为 O(nlogn),其中 n 是平面上的点的数量。这个算法在实际应用中被广泛使用,并且在计算几何领域有着重要的意义。
以下是分治法求最近点对的 C++ 面向过程代码:

#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;

struct Point {
    int x, y;
};

bool compareX(const Point& a, const Point& b) {
    return a.x < b.x;
}

bool compareY(const Point& a, const Point& b) {
    return a.y < b.y;
}

float distance(const Point& a, const Point& b) {
    return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}

float bruteForceClosestPair(vector<Point>& points, int start, int end) {
    float minDist = numeric_limits<float>::max();
    for (int i = start; i < end; ++i) {
        for (int j = i + 1; j < end; ++j) {
            minDist = min(minDist, distance(points[i], points[j]));
        }
    }
    return minDist;
}

float closestPairUtil(vector<Point>& pointsByX, vector<Point>& pointsByY, int start, int end) {
    if (end - start <= 3) {
        return bruteForceClosestPair(pointsByX, start, end);
    }

    int mid = (start + end) / 2;
    Point midPoint = pointsByX[mid];

    vector<Point> leftPointsByY, rightPointsByY;
    for (const Point& p : pointsByY) {
        if (p.x <= midPoint.x) {
            leftPointsByY.push_back(p);
        } else {
            rightPointsByY.push_back(p);
        }
    }

    float leftClosest = closestPairUtil(pointsByX, leftPointsByY, start, mid);
    float rightClosest = closestPairUtil(pointsByX, rightPointsByY, mid, end);
    float minDist = min(leftClosest, rightClosest);

    vector<Point> strip;
    for (const Point& p : pointsByY) {
        if (abs(p.x - midPoint.x) < minDist) {
            strip.push_back(p);
        }
    }

    for (int i = 0; i < strip.size(); ++i) {
        for (int j = i + 1; j < strip.size() && (strip[j].y - strip[i].y) < minDist; ++j) {
            minDist = min(minDist, distance(strip[i], strip[j]));
        }
    }

    return minDist;
}

float closestPair(vector<Point>& points) {
    vector<Point> pointsByX = points;
    vector<Point> pointsByY = points;
    sort(pointsByX.begin(), pointsByX.end(), compareX);
    sort(pointsByY.begin(), pointsByY.end(), compareY);
    return closestPairUtil(pointsByX, pointsByY, 0, points.size());
}

int main() {
    vector<Point> points = {{1, 1}, {3, 4}, {5, 2}, {7, 6}, {8, 1}, {9, 5}};
    cout << "最近点对的距禶是:" << closestPair(points) << endl;
    return 0;
}

这段代码首先定义了一个表示点的结构体 Point,然后实现了两个比较函数 compareX 和 compareY,用于根据 x 坐标和 y 坐标对点进行排序。另外还定义了计算点对距离的函数 distance 和暴力求解最近点对的函数 bruteForceClosestPair。

然后实现了分治求解最近点对的函数 closestPairUtil,其中采用分治法进行计算。最后,在 main 函数中给出了一个示例,并输出最近点对的距离。

希望这段代码可以帮助到你理解分治法求解最近点对的算法思想和实现过程。

如果你想更深入地了解人工智能的其他方面,比如机器学习、深度学习、自然语言处理等等,也可以点击这个链接,我按照如下图所示的学习路线为大家整理了100多G的学习资源,基本涵盖了人工智能学习的所有内容,包括了目前人工智能领域最新顶会论文合集和丰富详细的项目实战资料,可以帮助你入门和进阶。

链接: 人工智能交流群【最新顶会与项目实战】(点击跳转)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RRRRRoyal

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值