算法-数学与简单DP-895. 最长上升子序列

本文介绍了如何利用动态规划算法解决给定数列中寻找长度最长的单调递增子序列问题。通过定义状态转移和集合划分,找出以每个数结尾的子序列属性,最终输出最大子序列长度。
摘要由CSDN通过智能技术生成

题目

给定一个长度为 N的数列,求数值严格单调递增的子序列的长度最长是多少。

输入格式

第一行包含整数 N。

第二行包含 N 个整数,表示完整序列。

输出格式

输出一个整数,表示最大长度。

数据范围

1≤N≤1000,
−10的9次方≤数列中的数≤10的9次方

输入样例:
7
3 1 2 1 8 5 6
输出样例:
4

思路

  1. 本题的问题关键点在于子序列。以上述为例:最长单调子序列是1 2 5 6
  2. DP:
    1. 状态表示:一维序列:f[i]
      1. 集合:从题目的问法出发去定义:在所有以a[i]结尾的严格单调上升子序列
      2. 属性:最大值(本题),最小值,数量

    2. 状态计算:挖掘“最后”,以最后一个不同的点来划分
      1. 集合的划分:以倒数第二个数是什么分成i类,下图下标从1开始
      2. 求第K类中的上升子序列=左半部分的max+1;左半部分的max=f(k);
      3. 最后在所有k类中找到最大值,某一类可能不存在:a[k]>=a[i],只有在a[k]<a[i]的时候才要计算max
求第K类中的上升子序列

 

代码

N=int(input())
L=list(map(int,input().split()))
f=[0 for _ in range(N)]
res=0
for i in range(0,N): # 根据倒数第二个不同的数分了i类
    f[i]=1
    for k in range(0,i): # 计算左半部分k的最大值,有i-1个数
        if L[i]>L[k]: # 合法才要计算
            f[i]=max(f[i],f[k]+1)
    res =max(res,f[i])
print(res)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值