递归——幂集(C++)

终其一生,你在追求什么?

——2024年6月16日11:56


题目描述

        给定正整数n(n≥1),给出求{1~n}的幂集,例如,n=3时,{1,2,3}对应的幂集合为{{},{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}},输出不分顺序。

 

题解思路

        归纳法+迭代法

本题和我的上一篇博客:全排列的C++实现-CSDN博客解题思路相似,可以参考一下。

1. 当n=1时,{1}对应的幂集{{},{1}};

2. 当n=2时,{1,2}对应的幂集{{},{1}}∪{{2},{1,2}};

3. 当n=3时,{1,2,3}对应的幂集是{{},{1},{2},{1,2}}∪{{3},{1,3},{2,3},{1,2,3}};

……

规律是什么?

当n=2时,2的幂集是在1的幂集中插入了元素2之后再与1的幂集并起来的;

当n=3时,3的幂集是在2的幂集中插入了元素3之后再与2的幂集并起来的;

 

代码思路

1. 对于n=1时,可直接将其初始化为{{},{1}}并直接输出,当n大于1时则再1的基础上不断更新;

2. 数字每增加1,就需要在上一次的结果中逐个遍历并插入当前数字,比如,当n=2时,在已经初始化之后的结果{{},{1}}中逐个遍历并插入数字2,得到{{2},{1,2}},在将结果插入到{{},{1}}中得到{{},{1},{2},{1,2}}以便下次更新插入3;

那么请根据代码思路自己实现一下吧!

 

方式一:非递归实现

vector<vector<int>> getMiji(int n){
    vector<vector<int>> res = {{}, {1}};
    if(n == 1){
        return res;
    }
    for(int i = 2; i <= n; i++){
        vector<vector<int>> tmp = res;
        for(auto e:tmp){
            e.push_back(i);//对上次的结果插入当前数字
            res.push_back(e);//更新结果
        }
    }
    return res;
}

方式二:递归实现

vector<vector<int>> getMiji(vector<vector<int>> &res, int n){
    if(n == 1){
        return {{}, {1}};
    }
    res = getMiji(res, n-1);
    vector<vector<int>> tmp = res;
    for(auto e:tmp){
        e.push_back(n);
        res.push_back(e);
    }
    return res;
}

结果展示

75d1fc3d2ec3427eb28c53671514b820.png

题目变式

        如果对给定的集合求幂集呢?比如给定一个集合为{2,4,6},怎么求它的幂集,欢迎大家积极尝试,本题为LeetCode78题,附递归代码如下:

// 获取指定集合中的幂集
#include<iostream>
#include<vector>

using namespace std;

vector<vector<int>> getMiji(vector<vector<int>> &res, vector<int> &v, int len){
    // len是v的初始长度

    if(len == 1){
        return {{}, {v[0]}};
    }
    res = getMiji(res, v, len - 1);
    vector<vector<int>> tmp = res;
    for(auto e:tmp){
        e.push_back(v[len-1]);
        res.push_back(e);
    }
    return res;
}

int main(){
    vector<int> v = {2, 4, 6};
    vector<vector<int>> res;
    res = getMiji(res, v, 3);
    for(auto e:res){
        for(auto m:e){
            cout<<m<<'\t';
        }
        cout<<endl;
    }
    cout<<"幂集中的元素个数为"<<res.size()<<"个";
    return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

施霁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值