DP(区间DP)

目录

石子合并

  合并果子(贪心 Huffman树)

环形石子合并

石子合并

设有 N 堆石子排成一排,其编号为 1,2,3,…,N。

每堆石子有一定的质量,可以用一个整数来描述,现在要将这 N 堆石子合并成为一堆。

每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。

例如有 4 堆石子分别为 1 3 5 2, 我们可以先合并 1、2堆,代价为 4,得到 4 5 2, 又合并 1、2堆,代价为 9,得到 9 2 ,再合并得到 11,总代价为 4+9+11=24

如果第二步是先合并 2、3堆,则代价为 7,得到 4 7,最后一次合并代价为 11,总代价为 4+7+11=22。

问题是:找出一种合理的方法,使总的代价最小,输出最小代价。

输入格式

第一行一个数 N 表示石子的堆数 N。

第二行 N 个数,表示每堆石子的质量(均不超过 1000)。

输出格式

输出一个整数,表示最小代价。

数据范围

1≤N≤300

输入样例:

4
1 3 5 2

输出样例:

22

 

 每个状态只会依赖比它长度更短的其他状态,所以先枚举长度可以保证在计算每个状态之前,先计算出它所依赖的状态。

如果先枚举 i

   可以知道

      起点小于 i 的所有情况;

      起点为i,长度小于 len的所有情况

   不能知道

     起点大于i 的所有情况

     起点为i,长度大于 len的情况

如果先枚举 len

   可以知道

     长度小于 len的所有情况

     长度为 len,起点小于 i 的所有情况

  不能知道

     长度大于 len的所有情况

     长度为 len,起点大于 i 的情况

需求:

f[i][k] :起点为 i,长度为 k - i + 1 < len 两种都可以

f[k+1][j] :起点为 k + 1 > i,长度为 j - k < len 不能先枚举 i

#include<iostream>
#include<cstring>
using namespace std;
const int N=330;
int f[N][N];//f[i][j]表示第i堆石子到第j堆石子(一段区间)合并成一堆需要的最小代价
int w[N],s[N];
int main()
{
    int n;cin>>n;
    for(int i=1;i<=n;i++)cin>>w[i];
    memset(f,0x3f,sizeof f);//求最小值 故需要初始化最大
    for(int i=0;i<=n;i++) f[i][i]=0;//i到i只有自己 不需要花费 
    for(int i=1;i<=n;i++) s[i]=s[i-1]+w[i];//前缀和
    for(int len=2;len<=n;len++)
    {
        for(int i=1;i+len-1<=n;i++)//枚举长度
        {
            int l=i,r=i+len-1;//区间的左端点 右端点
            for(int k=1;k<r;k++)
            {
            //计算i到j 合并成一堆 最后肯定是 在l--r区间中一个分界线合成一堆 
            //先不求最后那一和 合成左堆最小代价 f[l][k] 合成右堆的最小代价 f[k+1][r]
            //最后一步将左右两堆合起来 左堆的最小代价+右堆的最小代价+(合成最后一步就是l-r的代价)
                f[l][r]=min(f[l][r],f[l][k]+f[k+1][r]+s[r]-s[l-1]);
            }
        }
    }
    cout<<f[1][n]<<endl;//输出从第一堆石子到第n堆石子合并为一堆石子的最小代价
    return 0;
}

  合并果子(贪心 Huffman树)

在一个果园里,达达已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。

达达决定把所有的果子合成一堆。

每一次合并,达达可以把两堆果子(任意两堆,不受限制)合并到一起,消耗的体力等于两堆果子的重量之和。

可以看出,所有的果子经过 n−1 次合并之后,就只剩下一堆了。

达达在合并果子时总共消耗的体力等于每次合并所耗体力之和。

因为还要花大力气把这些果子搬回家,所以达达在合并果子时要尽可能地节省体力。

假定每个果子重量都为 1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使达达耗费的体力最少,并输出这个最小的体力耗费值。

例如有 3 种果子,数目依次为 1,2,9。

可以先将 1、2堆合并,新堆数目为 3,耗费体力为 3。

接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 12,耗费体力为 12。

所以达达总共耗费体力=3+12=15。

可以证明 15 为最小的体力耗费值。

输入格式

输入包括两行,第一行是一个整数 n,表示果子的种类数。

第二行包含 n 个整数,用空格分隔,第 i 个整数 ai 是第 i 种果子的数目。

输出格式

输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。

输入数据保证这个值小于 231。

数据范围

1≤n≤10000
1≤ai≤20000

输入样例:

3 
1 2 9 

输出样例:

15

经典的Huffman树 每次合并重量最小的两堆果子即可

#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
int main()
{
    priority_queue<int,vector<int>,greater<int>>heap;
    int n;cin>>n;
    for(int i=1;i<=n;i++)
    {
        int a;cin>>a;
        heap.push(a);
    }
    int ans=0;
    while(heap.size()>1)
    {
        int x1=heap.top();
        heap.pop();
        int x2=heap.top();
        heap.pop();
        ans+=x1+x2;
        heap.push(x1+x2);
    }
    cout<<ans<<endl;
    return 0;
}

环形石子合并

将 n 堆石子绕圆形操场排放,现要将石子有序地合并成一堆。

规定每次只能选相邻的两堆合并成新的一堆,并将新的一堆的石子数记做该次合并的得分。

请编写一个程序,读入堆数 n 及每堆的石子数,并进行如下计算:

  • 选择一种合并石子的方案,使得做 n−1次合并得分总和最大
  • 选择一种合并石子的方案,使得做 n−1 次合并得分总和最小

输入格式

第一行包含整数 n,表示共有 n 堆石子。

第二行包含 n 个整数,分别表示每堆石子的数量。

输出格式

输出共两行:

第一行为合并得分总和最小值,

第二行为合并得分总和最大值。

数据范围

1≤n≤200

输入样例:

4
4 5 9 4

输出样例:

43
54

 

 

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=440;
int f[N][N],g[N][N];
int w[N],s[N];
int main()
{
    int n;cin>>n;
    for(int i=1;i<=n;i++)
    {
        cin>>w[i];
        w[i+n]=w[i];
    }
    for(int i=1;i<=2*n;i++) s[i]=s[i-1]+w[i];
    memset(f,0x3f,sizeof f);//求最小值 故初始化成大的
    memset(g,-0x3f,sizeof g);//求最大值 故初始化成小的
    
    for(int len=1;len<=n;len++)
    {
        for(int i=1;i+len-1<=2*n;i++)
        {
            int l=i,r=i+len-1;
            if(l==r)
            {
                f[l][r]=0,g[l][r]=0;//只有自己一堆的时候 不需要花费
            }
            for(int k=l;k<r;k++)
            {
                f[l][r]=min(f[l][r],f[l][k]+f[k+1][r]+s[r]-s[l-1]);
                g[l][r]=max(g[l][r],g[l][k]+g[k+1][r]+s[r]-s[l-1]);
            }
        }
    }
    int min1=0x3f3f3f3f,max1=-0x3f3f3f3f;
    for(int i=1;i<=n;i++)
    {
        min1=min(min1,f[i][i+n-1]);
        max1=max(max1,g[i][i+n-1]);
    }
    cout<<min1<<endl<<max1<<endl;
    return 0;
}

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
区间DP是一种动态规划的方法,用于解决区间范围内的问题。在Codeforces竞赛中,区间DP经常被用于解决一些复杂的字符串或序列相关的问题。 在区间DP中,dp[i][j]表示第一个序列前i个元素和第二个序列前j个元素的最优解。具体的转移方程会根据具体的问题而变化,但是通常会涉及到比较两个序列的元素是否相等,然后根据不同的情况进行状态转移。 对于区间长度为1的情况,可以先进行初始化,然后再通过枚举区间长度和区间左端点,计算出dp[i][j]的值。 以下是一个示例代码,展示了如何使用区间DP来解决一个字符串匹配的问题: #include <cstdio> #include <cstring> #include <string> #include <iostream> #include <algorithm> using namespace std; const int maxn=510; const int inf=0x3f3f3f3f; int n,dp[maxn][maxn]; char s[maxn]; int main() { scanf("%d", &n); scanf("%s", s + 1); for(int i = 1; i <= n; i++) dp[i][i] = 1; for(int i = 1; i <= n; i++) { if(s[i] == s[i - 1]) dp[i][i - 1] = 1; else dp[i][i - 1] = 2; } for(int len = 3; len <= n; len++) { int r; for(int l = 1; l + len - 1 <= n; l++) { r = l + len - 1; dp[l][r] = inf; if(s[l] == s[r]) dp[l][r] = min(dp[l + 1][r], dp[l][r - 1]); else { for(int k = l; k <= r; k++) { dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]); } } } } printf("%d\n", dp[n]); return 0; } 希望这个例子能帮助你理解区间DP的基本思想和应用方法。如果你还有其他问题,请随时提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值