什么是深度学习框架?
深度学习框架是一种用于构建、训练和部署深度神经网络模型的工具集合。它提供了丰富的函数和工具,使开发者能够方便地创建、调整和优化神经网络模型。深度学习采用 “端到端”的学习模式,在很大程度上减轻负担。但随着神经网络的发展,模型的复杂度也在不断提升。 框架存在的意义就是屏蔽底层的细节,使研究者可以专注于模型结构。(搭积木)
深度学习框架提供了一套易于使用的构建块,这些构建块可以看作是积木,通过组合这些积木,开发者可以搭建出复杂的深度学习模型。这些框架通常包括以下特点:
- 简化流程:框架提供了高层抽象,让开发者无需从头编写大量代码即可实现深度学习算法。
- 优化性能:框架内部经过优化,能够高效地运行在CPU、GPU等多种硬件上,提高了计算效率。
- 降低门槛:通过使用深度学习框架,即使是没有深厚数学背景的开发者也能够进行深度学习模型的开发和实验。
- 灵活自定义:开发者可以根据需要自定义网络结构、损失函数等,以适应不同的应用场景。
- 支持多种模型:大多数框架支持多种已有的模型和算法,如卷积神经网络(CNN)、循环神经网络(RNN)等,并且允许用户创建新的模型结构。
目前常用的深度学习框架有PyTorch、Theano、TensorFlow、Keras、Caffe、MXNet、CNTK、PaddlePaddle。 这些深度学习框架被应用于计算机视觉、自然语言处理、语音识别、机器学习等多个领域。
深度学习框架一般提供了以下功能:
1.模型定义:提供了一种方式来定义神经网络模型的结构,包括网络层的连接和参数设置。
2.训练和优化:提供了一种方式来训练和优化神经网络模型,包括定义损失函数、选择优化算法和设置训练参数。
3. 自动求导:能够自动计算神经网络模型的梯度,以便进行反向传播算法进行训练。
4.并行计算:支持在多个GPU或分布式环境上进行并行计算,以提升训练和推理的效率。
5.部署和推理:能够将训练好的神经网络模型部署到实际应用中进行推理,包括在移动设备、边缘设备或云端进行推理。
什么是Caffe?
Caffe,全称为卷积神经网络框架(Convolutional Architecture for Fast Feature Embedding)是一个开源的深度学习框架,专为图像处理任务而设计,具有清晰、高效的特点。是一种常用的深度学习框架,主要应用在视频、图像处理等方面。Caffe是一个清晰、可读性高、快速的深度学习框架。Caffe的作者是贾扬清,其为加州大学伯克利分校的博士,现就职于Facebook公司。
Caffe是一个主流的工业级深度学习工具,精于图像处理。它有很多扩展,但是由于一些遗留的架构问题,它不够灵活,且对递归网络和语言建模的支持很差。对于基于层的网络结构,Caffe扩展性不好;而用户如果想要增加层,则需要自己实现前向传播、反向传播以及参数更新。
Caffe的主要特点包括:
- 模块化:Caffe的设计思想强调模块化,使得网络的设计和实验变得灵活和方便。
- 高性能:Caffe支持基于GPU和CPU的加速计算内核库,如NVIDIA cuDNN和Intel MKL,这使得它在处理大规模数据时能够保持高效的性能。
- 易用性:Caffe提供了命令行、Python和MATLAB接口,用户可以根据自己的需求选择合适的方式进行操作。
- 可扩展性:尽管Caffe在一段时间内因其简单和高效而受到欢迎,但随着深度学习领域的快速发展,一些新的层次结构和模型的出现,Caffe可能需要通过C++和CUDA编程来扩展新的功能,这可能会对一些用户构成挑战。
caffe概述
Caffe是一种对新手非常友好的深度学习框架,它的相关优化都是以文本形式而非代码形式给出。Caffe中的网络都是有向无环图的集合,可以直接定义。Caffe的定义:
name:"dummy-net"
layers {name:"data"...}
layers {name:"conv"...}
layers {name:"pool"...}
layers {name:"loss"...}
数据及其导数以blob的形式在层间流动,Caffe层的定义由两部分组成:层属性与层参数。
关于Caffe的一些详细信息:
- 架构与设计:Caffe的核心是用C++编写的,它支持多种类型的深度学习架构,包括CNN(卷积神经网络)、RCNN(区域卷积神经网络)、LSTM(长短期记忆网络)以及全连接神经网络等。它的设计旨在提供表达性、速度和模块化思维,允许用户根据需要自定义网络结构。
- 性能优化:Caffe支持基于GPU和CPU的加速计算内核库,如NVIDIA cuDNN和Intel MKL,这使得它在处理大规模数据时能够实现高效的运算性能。
- 接口语言:虽然Caffe的内核是C++实现的,但它提供了Python和MATLAB的接口,方便不同背景的研究人员和开发者使用。
- 易用性:Caffe提供了高级API,如Net和Solver,这些工具可以简化神经网络模型的构建和训练过程。
- 社区与版本:Caffe由伯克利视觉和学习中心(BVLC)开发,并且得到了开源社区的广泛支持。随着时间的推移,出现了多个版本和分支,以适应不同的应用需求和操作系统。
- 应用场景:Caffe主要面向的是计算机视觉领域,特别是在图像分类和图像分割方面表现突出。它也可以被用于其他类型的深度学习任务,如自然语言处理等。
TensorFlow
TensorFlow是一个采用数据流图进行数值计算的开源软件库。节点(node)在数据流图中表示数学操作,线(edge)则表示在节点间相互联系的多维数据数组,即张量(tensor)。它灵活的架构让你可以在多种平台上展开计算。TensorFlow由Google 大脑小组(隶属于Google 机器智能研究机构)的研究员和工程师们开发,用于机器学习和深度神经网络方面的研究,但这个系统的通用性使其也可广泛用于其他计算领域。数据流图(DFD)是一种图形化技术,用于描述系统中数据的流动和变换过程。
数据流图用“节点”和“线”的有向图来描述数学计算。“节点”一般用来表示施加的数学操作,但也可以表示数据输入(feed in)的起点/输出(push out)的终点,或者是读取/写入持久变量(persistentvariable)的终点。“线”表示“节点”之间的输入/输出关系。这些数据“线”可以输运“size可动态调整”的多维数据数组,即“张量”。
数据流图主要包括以下几个要素:
- 外部实体:这些是与系统交换信息的外部来源或目标。
- 数据流:表示数据在系统内部或与外部实体之间的流动方向。
- 加工:描述数据在系统中的变换过程,通常用圆形或圆角矩形表示。
- 数据存储:代表系统中存储数据的地方,通常用两条平行线表示。
数据流图的绘制遵循以下原则和注意事项:
- 平衡原则:确保父图与子图之间保持平衡,即父图中的加工在子图中被详细展开,同时保持数据流的连续性。
- 逐层细分:通过逐层细分的方式来描述系统内各个部件的功能,以及数据在它们之间的传递情况。
- 命名规范:每个元素必须有合理的名字,加工名字通常采用动词+名词短语,以反映其功能;数据流名字应代表整个数据流的内容。
TensorFlow的特点
TensorFlow不是一个严格的“神经网络”库。只要用户将计算表示为一个数据流图就可以使用TensorFlow。用户负责构建图,描写驱动计算的内部循环。TensorFlow提供有用的工具来帮助用户组装“子图”,当然用户也可以自己在TensorFlow基础上写自己的“上层库”。定义新复合操作和写一个Python函数一样容易。TensorFlow的可扩展性相当强,如果用户找不到想要的底层数据操作,也可以自己写一些C++代码来丰富底层的操作。
TensorFlow可在CPU和GPU上运行,比如可以运行在台式计算机、服务器、手机移动设备等。TensorFlow支持自动在多个CPU上规模化运算训练模型,以及将模型迁移到移动端后台。
基于梯度的机器学习算法会受益于TensorFlow自动求微分的能力。作为TensorFlow用户,只需要定义预测模型的结构,将这个结构和目标函数(objective function)结合在一起,并添加数据,TensorFlow将自动为用户计算相关的导数。计算某个变量相对于其他变量的导数仅仅是通过扩展你的图来完成的,所以用户能一直清楚地看到究竟在发生什么。
TensorFlow还有一个合理的C++使用界面,也有一个易用的Python使用界面来构建和执行你的图。你可以直接写 Python/C++程序,也可以通过交互式的IPython界面来使用TensorFlow,尝试实现你的想法。TensorFlow可以帮用户将笔记、代码、可视化结果等有条理地归置好。
特点概括:
1.TensorFlow 提供了一个强大的计算图模型,这是其核心特性之一。计算图是一种数据流图,其中的节点代表操作,边代表数据流。这种表示方式允许开发者清晰地构建和理解复杂的计算过程。
2.TensorFlow 支持分布式计算,这意味着它可以在多台计算机上运行模型训练任务,从而加快了大规模数据处理和模型训练的速度。
3.TensorFlow 拥有自动微分功能,这简化了梯度下降等优化算法的实现过程。它还提供了模型优化和调试工具,帮助开发者改进模型性能并诊断潜在问题。
4.TensorFlow 的设计考虑了GPU和内存的优化,这使得它在处理大量数据时能够高效地利用硬件资源。
TensorFlow概述
TensorFlow中的Flow,也就是流,是其完成运算的基本方式。流是指一个计算图或简单的一个图,图不能形成环路,图中的每个节点代表一个操作,如加法、减法等。每个操作都会导致新的张量形成。第一,叶子顶点或起的顶点始终是张量,即操作永远不会发生在图的开头,由此可以推断,图中的每个操作都应该接收一个张量并产生一个新的张量。
第二,张量不能作为非叶子节点出现,这意味着它们应始终作为输入提供给操作/节点。
第三,计算图总是以层次顺序表达复杂的操作,通过将a+b表示为c,将b+1表示为d可以分层次组织上述表达式。
第四,计算图的并行,即同级节点的操作彼此独立,这是计算图的重要属性之一。
PyTorch
PyTorch是一个开源的Python机器学习库,专为深度学习研究和开发设计。PyTorch由Facebook开发,以其动态计算图、易用性、灵活性和强大的社区支持,成为了深度学习领域中的一个受欢迎的框架。它适合用于学术研究、原型开发以及工业级的深度学习应用。PyTorch具有先进设计理念的框架,其历史可追溯到2002年就诞生于纽约大学的Torch。Torch使用了一种不是很大众的语言Lua作为接口。Lua简洁高效,但由于其过于小众,以至于很多人听说要掌握Torch必须新学一门语言就望而却步,但Lua其实是一门比Python还简单的语言。考虑到Python在计算科学领域的领先地位,以及其生态完整性和接口易用性,几乎任何框架都不可避免地要提供Python接口。终于,在2017年,Torch的幕后团队推出了PyTorch。 PyTorch不是简单地封装Lua,Torch提供Python接口,而是对Tensor之上的所有模块进行了重构,并新增了最先进的自动求导系统,成为当下最流行的动态图框架。 PyTorch特点是拥有生态完整性和接口易用性,使之成为当下最流行的动态框架之一
PyTorch的特点
1.PyTorch 既可以看作为加入了GPU 支持的numpy。TensorFlow 与Caffe 都是命令式的编程语言,而且是静态的,即首先必须构建一个神经网络,然后一次又一次使用同样的结构;如果想要改变网络的结构,就必须从头开始。 但是PyTorch通过一种反向自动求导的技术,可以让用户零延迟地任意改变神经网络的行为。
2.PyTorch 的设计思路是线性、直观且易于使用的,当用户执行一行代码时,它会忠实地执行,所以当用户的代码出现Bug 的时候,可以通过这些信息轻松快捷地找到出错的代码,不会让用户在Debug 的时候因为错误的指向或者异步和不透明的引擎浪费太多的时间。
3.PyTorch 的代码相对于TensorFlow 而言,更加简洁直观,同时对于TensorFlow高度工业化的底层代码,PyTorch 的源代码就要友好得多,更容易看懂。深入API,理解PyTorch 底层肯定是一件令人高兴的事。
PyTorch的特点概括:
1.动态计算图:PyTorch使用动态计算图来构建和优化神经网络模型。这种计算图在执行时动态生成,允许更加直观和灵活的编程模型。
2.易用性:PyTorch的设计哲学之一是易用性,它的API设计简洁明了,使得新手用户可以更快上手进行深度学习模型的开发。
3.灵活性:PyTorch提供了灵活的深度学习构件,如张量计算、自动求导机制和优化器,这些特性使得研究者可以轻松地实现新的研究想法。
4.强大的社区支持:作为一个开源项目,PyTorch拥有一个活跃的社区,提供了大量的教程、文档和第三方扩展,这些都极大地促进了用户之间的交流和协作。
5.GPU加速:PyTorch支持GPU加速,可以利用NVIDIA的CUDA平台提高深度学习模型的训练速度和效率。
PyTorch概述
PyTorch最大的优势是建立的神经网络是动态的,可以非常容易地输出每一步的调试结果,相比于其他框架来说,调试起来十分方便。相比于TensorFlow和Caffe而言,PyTorch可读性非常高。
三者的比较
1. Catffe
Caffe的特点是简洁、快速,缺点是缺少灵活性。Caffe灵活性的缺失主要是因为它的设计缺陷,在Caffe中最主要的抽象对象是层,每实现一个新的层,必须要利用C++实现它的前向。传播和反向传播代码;而如果想要新的层运行在GPU上,还需要同时利用CUDA实现这一的前向传播和反向传播。这种限制使得不熟悉C++和CUDA的用户扩展Caffe十分困难。
Caffe凭借其易用性、简洁明了的源码、出众的性能和快速的原型设计获取了众多用户,曾经占据深度学习领域的“半壁江山”。但是在“深度学习新时代”到来之时,Caffe已经表现出明显的力不从心,诸多问题逐渐显现,包括灵活性缺失、扩展难、依赖众多环境且难以配置、应用局限等。尽管现在在GitHub上还能找到许多基于Caffe的项目,但是新的Caffe的项目已经越来越少。
Caffe的作者从加州大学伯克利分校毕业后加入了Google公司,参与过TensorFlow的开发,后来离开Google公司加入FAIR公司,担任工程主管,并开发了Caffe2。Caffe2是一个兼具表现力、速度和模块性的开源深度学习框架。它沿袭了大量的Caffe设计,可解决多年来在Caffe的使用和部署中发现的瓶颈问题。Caffe2的设计追求轻量级,在保有扩展性和高性能的同时,Caffe2也强调了便携性。Caffe2从一开始就以性能、扩展、移动端部署作为主要设计目标。Caffe2的核心C++库能提供高速和便携性,而其 Python和C++API使用户可以轻松地在Linux、Windows、 iOS、Android,甚至Raspberry Pi和NVIDIA Tegra上进行原型设计、训练和部署。
Caffe2继承了Caffe的优点,在速度上令人印象深刻。FAIR与应用机器学习团队合作,利用Caffe2大幅加速机器视觉任务的模型训练过程,仅需1小时就训练完ImageNet这样超大规模的数据集。然而尽管开发已超过一年,Caffe2仍然是一个不太成熟的框架,官网至今未提供完整的文档,其安装也比较麻烦,编译过程时常出现异常,在GitHub上也很少找到相应的代码。
“极盛”的时候,Caffe占据了计算机视觉研究领域的一半,虽然如今Caffe 已经很少用于学术界,但是仍有不少计算机视觉相关的论文使用Caffe。由于其稳定、出众的性能,不少公司还在使用Caffc部署模型。Caffe2尽管做了许多改进,但是还远没有达到替代Caffe的地步。
2. TensorFlow
在很大程度上,TensorFlow可以看作Theano的后继者,它们不仅有很大一批共同的开发者,而且拥有相近的设计理念,都是基于计算图实现自动微分系统。TensorFlow使用数据流图进行数值计算,节点代表数学运算,而边则代表在这些节点之间传递的多维数组(张量)。Tensorflow编程接口支持Python和C++。随着1.0版本的公布,Java、Go、R和HaskellAPI的aipha 版本也被支持。此外,TensorFlow还可在Google Cloud和AWS中运行。Tensotflow还支持Windows 7、Windoes10和Windows Server2016。由于TensorFlow使用C++ Eigen库所以车可在ARM架的上编译和优化。这也就意味着用户可以在各种服务器和移动设备上部暑自己的训练模型,无须执行单独的模型解码器或者加载Python解释器。作为当前最流行的深度学习框架之一,TensorFlow获得了极大的成功,但对它的批判也不绝于耳,总结起来主要有以下4点。
(1)过于复杂的系统设计。TensorFlow在GitHub代码仓库的总代码量超过100万行。这么大的代码仓库,对于项目维护者来说,维护成了一个难以完成的任务;而对读者来说,学习TensorFlow底层运行机制更是一个极其痛苦的过程,并且大多数时候这种尝试以放弃告终。
(2)频繁变动的接口。TensorFlow的接口一直处于快速迭代之中,并且没有很好地考虑向后兼容性,这导致现在许多开源代码已经无法在新版的TensorFlow上运行,也间接导致了许多基于TensorFlow的第三方框架出现bug。
(3)难以理解的概念。由于接口设计过于晦涩难懂,所以在设计TensorFlow时,创造了图、会话、命名空间、PlaceHolder等诸多抽象概念,对普通用户来说难以理解。同一个功能,TensorFlow提供了多种实现,这些实现使用中还有细微的区别,很容易将用户带入“坑”中。
(4)文档和教程缺乏明显的条理和层次。作为一个复杂的系统,TensorFlow只考虑到文档的全面性,而没有为用户提供一个真正循序渐进的入门教程。
由于直接使用 TensorFlow 的生产力过于低下,包括Google 官方等众多开发者尝试基于TensorFlow构建一个更易用的接口,Keras、Sonnet、TFLearn、TensorLayer、Slim、Fold、PrettyLayer等第三方框架每隔几个月就会被报道一次,但是大多又归于沉寂。至今TensorFlow仍没有一个统一易用的接口。
凭借Google公司强大的推广能力,TensorFlow已经成为当今“炙手可热”的深度学习框架,但是由于自身的缺陷,TensorFlow离最初的设计目标还很遥远。另外,由于 Google 公司对TensorFlow略显严格的把控,目前各大公司都在开发自己的深度学习框架。
3. PyTorch
PyTorch是当前难得的简洁、优雅且高效、快速的框架。PyTorch的设计追求最少的封装,尽量避免“重复造轮子”。不像TensorFlow中充斥着session、graph、operation、name_scope、variable、tensor等全新的概念,PyTorch的设计遵循tensor→variable(autograd)nn.Module这3个由低到高的抽象层次,分别代表高维数组(张量)、自动求导(变量)和神经网络(层/模块),而且这3个抽象之间联系紧密,可以同时进行修改等操作。
简洁的设计带来的另外一个好处就是代码易于理解。PyTorch的源码只有TensorFlow的十分之一左右,更少的抽象、更直观的设计使得PyTorch的源码十分易于阅读和理解。
PyTorch的灵活性不以降低速度为代价。在许多评测中,PyTorch 的速度表现胜过TensorFlow和Keras 等框架。框架的运行速度和程序员的编码水平有极大关系,但同样的算法,使用PyTorch实现的更有可能快过用其他框架实现的。
同时,PyTorch是所有的框架中面向对象设计的最优雅的一个。PyTorch的面向对象的接口设计来源于Torch,而Torch的接口设计以灵活、易用而著称,Keras作者最初就是受Torch的启发才开发了Keras。 PyTorch继承了Torch的“衣钵”,尤其是API的设计和模块的接口都与Torch高度一致。PyTorch的设计更符合人们的思维,它让用户尽可能地专注于实现自己的想法,即“所思即所得”,不需要考虑太多关于框架本身的束缚。