深度学习是机器学习的一个子领域,是一种基于神经网络的学习方法。深度学习是一种特殊的机器学习,它通过使用神经网络模型,尤其是深度神经网络(有多个隐藏层的神经网络)来学习数据的内在规律和表示。它的主要特点是可以自动地从大量数据中学习到有用的特征,而无需人工设计特征,和传统的机器学习方法相比深度学习一般需要更丰富的数据、更强大的计算能力。目前,深度学习方法被广泛应用于计算机视觉、自然语言处理、强化学习等领域。
1.1计算机视觉
1.1.1计算机视觉的定义
计算机视觉是指使用计算机及相关设备对生物视觉的一种模拟,是人工智能领域的一个重要分支,它专注于使计算机能够从采集到的数字图像或视频中获取信息,并对其进行处理、分析和理解。
1.1.2计算机视觉的基本任务
计算机视觉的基本任务包含图像处理、模式识别(图像识别)、图像理解、目标检测、图像生成等。以下是对这些任务的解释说明:
图像处理:把输入图像转换成具有预期特性的另一幅图像。例如,可通过一定的处理使输出图像有较高的信噪比,或通过增强处理突出图像的细节,以便于操作员的检验。在计算机视觉研究中经常利用图像处理技术进行预处理和特征抽取。
模式识别:根据从图像中抽取的统计特性或结构信息,把图像分成预定的类别,通常需要训练一个模型来识别图像中的特定特征,并将其与已知类别匹配。常见的模式识别有文字识别或指纹识别等。在计算机视觉中,模式识别技术经常用于图像中的某些部分,例如分割区域的识别和分类。
图像理解:对图像内容所包含的信息的理解。给定一幅图像,图像理解程序不仅需要描述图像本身,还需要描述和解释图像所代表的景物,以便对图像传递的信息做出判定。在人工智能研究的初期,经常会使用景物分析这个术语,以强调二维图像与三维景物之间的区别。
目标检测:与图像分类不同,目标检测不仅需要识别图像中的对象,还要确定它们在图像中的位置,这通常涉及到使用边界框来定位对象。目标检测一般包括以下步骤:
候选区域生成:使用一些候选区域生成算法,生成可能包含目标的区域。
特征提取:对每个候选区域提取特征,如颜色、纹理、形状等。
目标分类:使用机器学习或深度学习算法,将每个候选区域分类为目标或非目标。
边界框回归:对于被分类为目标的候选区域,通过回归算法校正其边界框的位置和大小。
非极大值抑制(NMS):对于多个重叠的候选区域,保留具有最高置信度的目标,去除冗余的区域。
目标检测可以分为: One-Stage目标检测:端到端,速度快。(YOLO、YOLOX)
Two-Stage目标检测:速度更慢,最开始提出。(SSD、R-CNN、Faster R-CNN)
图像生成:可以分为基于规则的方法和基于数据驱动的方法两大类,可以通过几何建模定义形状、光照和材质等参数,从而生成具有特定风格的图像,这些图像可能不存在于现实世界中。图像生成广泛应用于艺术创作、娱乐产业、设计、医疗成像等领域。
1.1.3计算机视觉的应用
一、医疗诊断
计算机视觉在医疗领域中发挥着重要作用。它能够分析医学图像,如X射线、MRI和CT扫描,辅助医生进行疾病诊断。例如,针对肿瘤的自动检测和定位,通过计算机视觉技术可以提高诊断的准确性和效率。
二、工业制造
在工业制造过程中,计算机视觉可用于产品质量检测和缺陷检测。通过摄像头和图像处理算法,可以实时监测产品的外观和尺寸,及时发现缺陷并进行