5、分类算法

这篇博客介绍了分类算法中的Logistic回归,它用于解决二分类问题,通过Sigmoid函数确保预测概率在0到1之间。Logistic回归的代价函数为非凸函数,不适合使用梯度下降法,因此通常采用更高级的优化算法如BFGS或L-BFGS。博客还讨论了决策边界的确定和多元分类问题的一对多方法。
摘要由CSDN通过智能技术生成

5、分类算法

5.1分类

分类:将数据分为1和0两种情况,等价于正负样本(后续还会有0,1,2,3, … … …… ……多分类问题)

通过函数来拟合数据,设某点为阀值点,将数据分类

用线性回归来拟合数据不精确,(线性回归 h θ ( x ) h_\theta(x) hθ(x)可以大于1或小于0)
在这里插入图片描述

所以接下来我们要用logistic回归算法( h θ ( x ) h_\theta(x) hθ(x)始终在0到1之间)

5.2假设陈述

当我们期望输出数据在 0 − 1 0-1 01之间,假设函数使得该函数得取值范围在 0 − 1 0-1 01之间,在下面例子中g(z)即为我们假设的函数
在这里插入图片描述

h θ ( x ) = g ( θ T x ) h_θ(x)=g(\theta^{T}x) hθ(x)=g(θTx)
g ( z ) = 1 1 + e − z g(z)=\frac{1}{1+e^{-z}} g(z)=1+ez1
g ( x ) \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad g(x) g(x)被称为Sigmoid函数或Logistic函数


对假设函数的理解
在这里插入图片描述

h θ ( x ) h_\theta(x) hθ(x)={y=1|x; θ \theta θ}可理解为基于参数 θ \theta θ,给定一个x使得y=1得概率

5.3决策界限

在这里插入图片描述

假设 y = 1 y=1 y=1 h θ ( x ) > = 0.5 h\theta(x)>=0.5 hθ(x)>=0.5

h θ ( x ) > = 0.5 ⇔ g ( z ) > = 0.5 ⇔ g ( θ T x ) > = 0.5 ⇔ θ T x > = 0 h_θ(x)>=0.5 \Leftrightarrow g(z)>=0.5 \Leftrightarrow g(\theta^{T}x)>=0.5 \Leftrightarrow \theta^{T}x>=0 hθ(x)>=0.5g(z)>=0.5g(θTx)>=0.5θTx>=0

例如
在这里插入图片描述

x 1 + x 2 = 3 x_1+x_2=3 x1+x2=3即为决策边界,决策边界不是样本数据的属性,而是假设函数及其参数 θ \theta θ的属性
决策边界将样本数据划分为y=0和y=1两个区域


在这里插入图片描述

x 2 + y 2 = 1 x^{2}+y^{2}=1 x2+y2=1是决策边界
高阶多项式应用于logistic函数中会产生复杂的决策边界

5.4代价函数

在这里插入图片描述

用之前的平方误差和作为代价函数,得到的 J ( θ ) J(\theta) J(θ)是非凸函数,这是因为 h θ ( x ) h\theta(x) hθ(x)是非线性的复杂模型,对于非凸函数,梯度下降法无法保证下降到全局最低值


Logistic函数的代价函数
C o s t ( h θ ( x ) , y ) = { − l o g ( h θ ( x ) ) , y = 1 − l o g ( 1 − h θ ( x ) ) , y = 0 (1) Cost(h_\theta(x),y)= \begin{cases} -log(h_θ(x)),y=1\\ -log(1-h_θ(x)),y=0 \end{cases} \tag{1} Cost(hθ(x),y)={log(hθ(x)),y=1log(1hθ(x)),y=0(1)
C o s t ( h θ ( x ) , y ) Cost(h_\theta(x),y) Cost(hθ(x),y)代表单个样本的代价
在这里插入图片描述
在这里插入图片描述

5.5简化代价函数与梯度下降

在这里插入图片描述

将分段式子合并为一条式子
在这里插入图片描述

梯度下降:
在这里插入图片描述

将参数向量 θ \theta θ逐一带到上式子来更新 θ j \theta_j θj
注意:这里的 h θ ( x ) = 1 1 + e − θ T x h_\theta(x)=\frac{1}{1+e^{-\theta^{T}x}} hθ(x)=1+eθTx1

5.6高级优化

利用梯度下降以外的更高级复杂的最小化代价函数的算法,可以提高logistic回归的运行速度,更好地处理大数据问题

最小化代价函数的算法 { 1 Gradient descent(梯度下降法) 2 Conjugate gradient(共轭梯度法) 3 BFGS 4 L-BFGS \text {最小化代价函数的算法} \begin{cases}1\quad \text {Gradient descent(梯度下降法)} \\ 2\quad \text{Conjugate gradient(共轭梯度法)}\\ 3 \quad\text{BFGS}\\ 4 \quad\text{L-BFGS} \end{cases} 最小化代价函数的算法 1Gradient descent(梯度下降法)2Conjugate gradient(共轭梯度法)3BFGS4L-BFGS

对于2、3、4的高级算法,它们有一套智能内循环,称线搜素算法,会自动尝试不同的学习率 α \alpha α并自动选择最好的 α \alpha α,同时,他们运行都比梯度下降法要快

5.7多元分类:一对多

通过再分类得到多个分类器 h θ ( x ) h_\theta(x) hθ(x)(用来预测y等于不同值时的概率),每个分类器针对不同的分类
在这里插入图片描述

分类有多少个,就得到多少个分类器


当代入新数据x进行预测分类时,同时代入全部的分类器中,得到的最大概率对应的分类即为预测结果
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值