Datawhale X 李宏毅苹果书 AI夏令营----Task03

第 2 章 实践方法论

在应用机器学习算法时,实践方法论能够帮助我们更好地训练模型。如果在 Kaggle 上的结果不太好,虽然 Kaggle 上呈现的是测试数据的结果,但要先检查训练数据的损失。看看模型在训练数据上面,有没有学起来,再去看测试的结果,如果训练数据的损失很大,显然它在训练集上面也没有训练好。接下来再分析一下在训练集上面没有学好的原因。

2.1 模型偏差

模型偏差可能会影响模型训练。假设模型过于简单,一个有未知参数的函数代\theta _{1}得到一个函数 f_{\theta _{1}}(x),同理可得到另一个函数f_{\theta _{2}}(x),把所有的函数集合起来得到一个函数的集合。但是该函数的集合太小了,没有包含任何一个函数,可以让损失变低的函数不在模型可以描述的范围内。在这种情况下,就算找出了一个 \theta ^{*},虽然它是这些函数里面最好的一个,但损失还是不够低。

这个时候重新设计一个模型,给模型更大的灵活性。所以如果模型的灵活性不够大,可以增加更多特征,可以设一个更大的模型,可以用深度学习来增加模型的灵活性,这是第一个可以的解法。但是并不是训练的时候,损失大就代表一定是模型偏差,可能会遇到另外一个问题:优化做得不好。

2.2 优化问题

一般只会用到梯度下降进行优化,这种优化的方法很多的问题。比如可能会卡在局部最小值的地方,无法找到一个真的可以让损失很低的参数。训练数据的损失不够低的时候,到底是模型偏差,还是优化的问题呢。一个建议判断的方法,通过比较不同的模型来判断模型现在到底够不够大。

可以先跑一些比较小的、比较浅的网络,或甚至用一些非深度学习的方法,比如线性模型、支持向量机(Support Vector Machine,SVM),SVM 可能是比较容易做优化的,它们比较不会有优化失败的问题。也就是这些模型它会竭尽全力的,在它们的能力范围之内,找出一组最好的参数,它们比较不会有失败的问题。因此可以先训练一些比较浅的模型,或者是一些比较简单的模型,先知道这些简单的模型,到底可以得到什么样的损失。接下来还缺一个深的模型,如果深的模型跟浅的模型比起来,深的模型明明灵活性比较大,但损失却没有办法比浅的模型压得更低代表说优化有问题,梯度下降不给力,因此要有一些其它的方法来更好地进行优化。

但如果训练数据上面的损失小,测试数据上的损失大,可能是真的过拟合。在测试上的结
果不好,不一定是过拟合。要把训练数据损失记下来,先确定优化没有问题,模型够大了。接
下来才看看是不是测试的问题,如果是训练损失小,测试损失大,这个有可能是过拟合。

2.3 过拟合

为什么会有过拟合这样的情况呢?举一个极端的例子,这是训练集。假设根据这些训练集,某一个很废的机器学习的方法找出了一个一无是处的函数。这个一无是处的函数,只要输入 x 有出现在训练集里面,就把它对应的 y 当做输出。如果 x 没有出现在训练集里面,就输出一个随机的值。这个函数啥事也没有干,其是一个一无是处的函数,但它在训练数据上的损失是 0。把训练数据通通丢进这个函数里面,它的输出跟训练集的标签是一模一样的,所以在训练数据上面,这个函数的损失可是 0 ,可是在测试数据上面,它的损失会变得很大,因为它其实什么都没有预测,这是一个比较极端的例子,在一般的情况下,也有可能发生类似的事情。

怎么解决过拟合的问题呢,有两个可能的方向:

第一个方向是往往是最有效的方向,即增加训练集。因此如果训练集,蓝色的点变多了,虽然模型它的灵活性可能很大,但是因为点非常多,它就可以限制住,它看起来的形状还是会很像,产生这些数据背后的 2 次曲线。可以做数据增强(data augmentation,),这个方法并不算是使用了额外的数据。

数据增强就是根据问题的理解创造出新的数据。举个例子,在做图像识别的时候,常做的一个招式是,假设训练集里面有某一张图片,把它左右翻转,或者是把它其中一块截出来放大等等。对图片进行左右翻转,数据就变成两倍。但是数据增强不能够随便乱做。在图像识别里面,很少看到有人把图像上下颠倒当作增强。因为这些图片都是合理的图片,左右翻转图片,并不会影响到里面的内容。但把图像上下颠倒,可能不是一个训练集或真实世界里面会出现的图像。如果给机器根据奇怪的图像学习,它可能就会学到奇怪的东西。所以数据增强,要根据对数据的特性以及要处理的问题的理解,来选择合适的数据增强的方式。

另外一个解法是给模型一些限制,让模型不要有过大的灵活性。假设 x 跟 y 背后的关系其实就是一条 2 次曲线,只是该 2 次曲线里面的参数是未知的。要用多限制的模型才会好取决于对这个问题的理解。因为这种模型是自己设计的,设计出不同的模型,结果不同。假设模型是 2 次曲线,在选择函数的时候有很大的限制,因为 2 次曲线要就是这样子,来来去去就是几个形状而已。所以当训练集有限的时候,来来去去只能够选几个函数。所以虽然说只给了 3 个点,但是因为能选择的函数有限,可能就会正好选到跟真正的分布比较接近的函数,在测试集上得到比较好的结果。

2.4 交叉验证

比较合理选择模型的方法是把训练的数据分成两半,一部分称为训练集(training set),一部分是验证集(validation set)。比如 90% 的数据作为训练集,有 10% 的数据作为验证集。在训练集上训练出来的模型会使用验证集来衡量它们的分数,根据验证集上面的分数去挑选结果,再把这个结果上传到 Kaggle 上面得到的公开分数。在挑分数的时候,是用验证集来挑模型,所以公开测试集分数就可以反映私人测试集的分数。但假设这个循环做太多次,根据公开测试集上的结果调整模型太多次,就又有可能在公开测试集上面过拟合,在私人测试集上面得到差的结果。不过上传的次数有限制,所以无法走太多次循环,可以避免在公开的测试集上面的结果过拟合。根据过去的经验,就在公开排行榜上排前几名的,往往私人测试集很容易就不好。

其实最好的做法,就是用验证损失,最小的直接挑就好了,不要管公开测试集的结果。在实现上,不太可能这么做,因为公开数据集的结果对模型的选择,可能还是会有些影响的。理想上就用验证集挑就好,有过比较好的基线(baseline)算法以后,就不要再去动它了,就可以避免在测试集上面过拟合。但是这边会有一个问题,如果随机分验证集,可能会分得不好,分到很奇怪的验证集,会导致结果很差,如果有这个担心的话,可以用 k 折交叉验证(k-foldcross validation)。k 折交叉验证就是先把训练集切成 k 等份。在这个例子,训练集被切成 3 等份,切完以后,拿其中一份当作验证集,另外两份当训练集,这件事情要重复 3 次。即第一份第 2 份当训练,第 3 份当验证;第一份第 3 份当训练,第 2 份当验证;第一份当验证,第 2 份第 3 份当训练。

2.5 不匹配

不匹配跟过拟合其实不同,一般的过拟合可以用搜集更多的数据来克服,但是不匹配是 指训练集跟测试集的分布不同,训练集再增加其实也没有帮助了。假设数据在分训练集跟测试集的时候,使用 2020 年的数据作为训练集,使用 2021 年的数据作为测试集,不匹配的问题可能就很严重。如果今天用 2020 年当训练集,2021 年当测试集,根本预测不准。因为 2020年的数据跟 2021 年的数据背后的分布不同。增加数据 也不能让模型做得更好,所以这种问题要怎么解决,匹不匹配要看对数据本身的理解了,我们可能要对训练集跟测试集的产生方式有一些理解,才能判断它是不是遇到了不匹配的情况。

  • 9
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值