ColorCheck
使用imatest解析24色ColorChecker图卡,生成的“AWB_colorerror.png(下图)”是进行色彩评价的重要参考,这张包含主要评价值的图片是怎样来的呢?
CIELAB色彩模型
CIELAB(也称为CIE Lab或Lab)是由国际照明委员会(CIE)于1976年提出的色彩模型,旨在模拟人类视觉对颜色的感知,并实现颜色差异的均匀性(即颜色间的数值差异与实际视觉差异更一致)。
结构
L(明度):表示颜色的亮度,范围通常从0(黑色)到100(白色)。
a:表示红绿轴,负值偏向绿色,正值偏向红色。
b:表示黄蓝轴,负值偏向蓝色,正值偏向黄色。
应用
- 工业设计、印刷、纺织等需要精准色彩匹配的领域。
- 图像处理中的色彩校正与分析。
- 跨设备颜色一致性管理(如屏幕与印刷品)。
特点
- 设备无关:不依赖特定设备(如显示器或打印机)定义颜色。
- 感知均匀性:颜色间的数值差异更接近人眼感知差异。
- 宽色域:覆盖人眼可见的几乎所有颜色。
CIELAB模型通过分离亮度与色彩信息,便于颜色调整与对比,是色彩科学和工业实践中的重要工具。
AWB_colorerror.png
生成这张包含主要解析结果的图片,需要将所解析的JPG图片的RGB颜色空间转换为LAB颜色空间,步骤比较复杂,其过程可以总结为:
imatest将计算出的L-meas, a*-meas, b*-meas, L-ideal, a*-ideal, b*-ideal等值保存在AWB_summary.csv文件中。
提取csv文件中的Lab值,建立LAB模型:
24色卡每一个色块的”方块(Ideal)”和”圆点(Camera)”包含在这个立体的色彩模型中。
这里需要指出,LAB 色彩模型在视觉上可以近似看作一个球体,如果根据实际计算出的Lab值进行动态拟合,有可能得到一个比较明显的不规则球体(椭圆)。
调整这个模型的角度,以黑白轴为中心,将俯视图投影,与imatest生成的AWB_colorerror.png图片进行对比:
二者色块的点位和趋势表现完全相同。
结论
imatest解析ColorChecker图卡生成的数据值图片“AWB_colorerror.png”是LAB色彩模型在垂直方向的俯视图投影。
延伸
以下是AWB_colorerror.png图片中每个值的含义和计算方法解释:
1. 坐标轴
- a*:表示红-绿通道(轴)的颜色分量。
- b*:表示黄-蓝通道(轴)的颜色分量。
- 这些是CIE-LAB色彩空间的两个色度分量。
2. 数据点
- 方块(Ideal):表示ColorChecker图卡的理想颜色(参考值)。
- 圆点(Camera):表示相机实际拍摄到的颜色。
- 编号:(1-24)对应ColorChecker图卡的24个色块。
3. 统计指标
- Mean camera chroma (saturation) = 112.2%:相机的平均色度(饱和度),通过计算所有色块的色度值的平均值得出。
- Color errors:
- ΔC*ab chroma corr: mean = 4.89; max = 17.1:色度误差,经过色度校正后的平均和最大误差。
- ΔC*ab uncorr: mean = 11.6; max = 19.2:未校正的色度误差的平均和最大值。
- ΔE*ab: mean = 6.56; max = 17.9:总色彩误差,表示理想颜色和实际颜色在CIE-LAB色彩空间中的综合差异的平均和最大值。
- W Bal (Zones 2-5) ΔC = 1.6:白平衡误差,在指定区域(Zones 2-5)的色度误差。
4. 其他信息
- sRGB (D65):参考色彩空间为sRGB,光源为D65(标准日光)。
- 时间戳:测试的时间。
- 参考数据:参考数据的来源。
- 软件信息:使用的imatest软件版本。
5. 色彩误差的计算方法
- 色度误差(ΔC*ab):通过计算理想颜色和实际颜色在色度上的欧几里得距离得出。
- 总色彩误差(ΔE*ab):通过计算理想颜色和实际颜色在CIE-LAB色彩空间中的综合差异得出。
6. 色度(Chroma)
- 色度计算:通过计算颜色的饱和度得出,公式为:
这些数据帮助评估相机的色彩还原能力、白平衡性能和饱和度表现。