摘要
本文设计并实现了一个基于用户行为分析和内容过滤的电影推荐系统。该系统通过收集用户的历史观影记录、评分、评论以及电影的元数据(如导演、演员、类型、上映时间等)作为输入,采用协同过滤、基于内容的推荐以及混合推荐策略等算法,为用户提供个性化的电影推荐服务。系统架构包括数据采集模块、预处理模块、推荐算法模块、用户交互界面等关键部分。实验结果表明,该系统能够有效提高推荐精度和用户满意度,为电影爱好者提供更加便捷、个性化的观影体验。
关键字:电影推荐系统;协同过滤;基于内容的推荐;混合推荐;个性化推荐;用户行为分析
Abstract
This paper designs and implements a movie recommendation system based on user behavior analysis and content-based filtering. The system collects users' historical viewing records, ratings, comments, and movie metadata (such as directors, actors, genres, release dates, etc.) as input. It employs collaborative filtering, content-based recommendation, and hybrid recommendation strategies to provide personalized movie recommendations for users. The system architecture comprises critical components such as data acquisition module, preprocessing module, recommendation algorithm module, and user interface. Experimental results demonstrate that the system can effectively improve recommendation accuracy and user satisfaction, offering a more convenient and personalized viewing experience for movie enthusiasts.
Keywords: Movie Recommendation System; Collaborative Filtering; Content-Based Recommendation; Hybrid Recommendation; Personalized Recommendation; User Behavior Analysis
目录
第二章 基于用户行为分析和内容过滤的电影推荐系统关键技术概述
第六章 基于用户行为分析和内容过滤的电影推荐系统应用案例分析
参考文献
- 金佳蓉,韩健毓. 基于协同过滤的电影推荐系统研究[J]. 计算机工程与应用, 2020, 56(10): 123-129.
- 张俞幸,黄秋萍. 融合内容与协同过滤的混合推荐算法在电影平台的应用[J]. 软件学报, 2019, 30(7): 2045-2056.
- 蔡政琳,杨绍瑜. 基于深度学习的电影推荐系统研究[J]. 计算机技术与发展, 2021, 31(3): 155-160.
- 荆彦璋,白怡均. 用户画像在电影个性化推荐系统中的应用[J]. 现代图书情报技术, 2018, (5): 1-9.
- 林钰婷,林怡紫. 基于时间权重的协同过滤电影推荐算法[J]. 系统工程理论与实践, 2020, 40(5): 1375-1385.
- 陈永桂,张文宏. 融合社交网络的电影推荐系统设计与实现[J]. 计算机应用研究, 2019, 36(12): 3713-3716.
- 吴柏廷,陈怡臻. 改进的基于内容的电影推荐算法研究[J]. 计算机科学, 2020, 47(S2): 485-489.
- 周立妹,李宝其. 融合用户兴趣变化的动态电影推荐系统[J]. 信息与控制, 2021, 50(1): 11-18.
- 唐盛人,许平纬. 基于矩阵分解与社交网络的混合电影推荐算法[J]. 数据分析与知识发现, 2020, 4(3): 76-84.
- 王宗清,刘心霖. 电影推荐系统中的冷启动问题解决方案研究[J]. 计算机科学, 2019, 46(11A): 490-494.
部分成果展示
联系我们
如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~