(计算机毕设选题推荐)基于文本挖掘的网易云音乐评论情感分析与研究

摘要

本文旨在通过文本挖掘技术,对网易云音乐平台上的用户评论进行情感分析,以探索用户对不同音乐作品的情感倾向。研究首先利用Python爬虫技术获取网易云音乐上的歌曲评论数据,随后通过文本预处理步骤(包括文本清洗、分词、去除停用词等)将非结构化文本转换为结构化数据。接着,采用情感词典与机器学习算法(如逻辑回归、支持向量机、深度学习模型如LSTM)相结合的方法,对评论进行情感极性判断(积极、消极或中性)。最后,通过可视化技术展示分析结果,为音乐平台提供用户偏好洞察及个性化推荐策略。本研究不仅有助于提升音乐平台的用户体验,也为其他社交媒体平台的情感分析提供了参考。

关键字: 文本挖掘,网易云音乐,情感分析,机器学习,深度学习,用户评论

Abstract

This paper focuses on conducting sentiment analysis of user comments on NetEase Cloud Music platform through text mining techniques, aiming to explore users' emotional tendencies towards different musical works. Initially, Python web crawling technology is employed to acquire song comment data from NetEase Cloud Music. Subsequently, text preprocessing steps, including text cleaning, word segmentation, and stopword removal, are performed to convert unstructured text into structured data. Then, a combination of sentiment lexicons and machine learning algorithms (such as logistic regression, support vector machines, and deep learning models like LSTM) is utilized to determine the sentiment polarity (positive, negative, or neutral) of the comments. Finally, visualization techniques are applied to present the analysis results, providing insights into user preferences and personalized recommendation strategies for music platforms. This study not only contributes to enhancing user experience on music platforms but also serves as a reference for sentiment analysis on other social media platforms.

Keywords: Text Mining, NetEase Cloud Music, Sentiment Analysis, Machine Learning, Deep Learning, User Comments

目录

  1. 引言
    • 1.1 研究背景与意义
    • 1.2 国内外研究现状
    • 1.3 研究目标与内容
  2. 理论基础与相关技术
    • 2.1 文本挖掘概述
    • 2.2 情感分析技术
      • 2.2.1 情感词典
      • 2.2.2 监督学习与非监督学习
      • 2.2.3 深度学习在情感分析中的应用
    • 2.3 数据处理与可视化技术
  3. 数据获取与预处理
    • 3.1 数据来源与爬取策略
    • 3.2 文本预处理流程
      • 3.2.1 文本清洗
      • 3.2.2 分词与去除停用词
      • 3.2.3 特征提取
  4. 情感分析模型构建
    • 4.1 基于情感词典的情感分析
    • 4.2 基于监督学习的情感分析
      • 4.2.1 逻辑回归模型
      • 4.2.2 支持向量机模型
    • 4.3 基于深度学习的情感分析
      • 4.3.1 LSTM模型构建
      • 4.3.2 模型训练与优化
  5. 实验结果与分析
    • 5.1 情感分析结果展示
    • 5.2 模型性能评估
    • 5.3 分析与讨论
  6. 可视化展示与系统实现
    • 6.1 数据可视化技术
    • 6.2 系统架构设计
    • 6.3 界面展示与功能实现
  7. 结论与展望
    • 7.1 研究总结
    • 7.2 研究不足与未来展望
  8. 参考文献

参考文献

  1. 龚凯丽, 张科伟. 基于文本挖掘的网易云音乐评论情感分析研究. [期刊名称], 2020.
  2. 张琪. 音乐"网抑云":青年圈群抑郁话语的符号表征和互动策略. 天津财经大学, 2020.
  3. 丁雅婷, 伍麟. 在线社区用户画像及自我呈现主题挖掘——以网易云音乐社区为例. 数据分析与知识发现, 2022.
  4. 吴江, 刘涛, 刘洋. 基于网络文本分析的网易云音乐战略选择研究. 现代信息科技, 2019.
  5. 滕洋. 移动音乐应用中虚拟社群的音乐社交研究——以网易云音乐为例. 中南财经政法大学, 2022.
  6. 李思琪. 音乐社交平台用户情绪特征研究. 安徽大学, 2018.
  7. 阮泽楠. 基于主题挖掘的音乐评论分析. 浙江理工大学, 发表年份未提供.
  8. 郭硕晔. 基于深度学习技术的文本情感分析方法研究. 华中师范大学, 2020.
  9. 龚凯丽, 张科伟. 基于文本挖掘的网易云课堂评价研究. [期刊名称], 2020.
  10. 陆益明, 吴松强. 网易云音乐平台用户行为分析与情感挖掘研究. [期刊名称], 发表年份未提供.

部分成果展示

联系我们

如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~

### 基于Spring Boot的计算机毕业设计选题推荐 #### 一、在线教育平台开发 构建一个支持多种教学模式(直播课、录播课)、具备学生管理和课程评价功能的在线教育平台。此项目有助于深入理解Web应用架构以及前后端分离技术,同时掌握如何处理大规模并发访问。 ```java @RestController @RequestMapping("/api/course") public class CourseController { @Autowired private CourseService courseService; @GetMapping("/{id}") public ResponseEntity<Course> getCourseById(@PathVariable Long id){ Optional<Course> optionalCourse = courseService.findById(id); return optionalCourse.map(ResponseEntity::ok).orElseGet(() -> ResponseEntity.notFound().build()); } } ``` [^1] #### 二、企业级权限管理系统 创建一套适用于中小型企业的角色权限控制系统,通过RBAC模型实现细粒度的操作授权机制,并集成OAuth2协议完成单点登录(SSO),从而保障业务数据的安全性隐私保护。 ```yaml spring: security: oauth2: client: registration: github: clientId: your-github-client-id clientSecret: your-github-secret-key scope: read:user,user:email ``` [^2] #### 三、物联网(IoT)设备监控系统 利用MQTT协议连接各种传感器节点至云端服务器,在此基础上搭建实时监测仪表盘界面;并引入机器学习算法预测异常情况的发生概率,提前预警潜在风险事件。 ```bash mosquitto_sub -h localhost -t "sensor/temperature" ``` [^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值