(计算机毕设选题推荐)基于文本挖掘的网易云音乐评论情感分析与研究

摘要

本文旨在通过文本挖掘技术对网易云音乐平台上的用户评论进行情感分析,以探索用户对不同音乐作品的情感倾向。研究首先利用Python爬虫技术获取网易云音乐上的歌曲评论数据,随后通过文本预处理步骤(包括文本清洗、分词、去除停用词等)将非结构化文本转换为结构化数据。接着,采用情感词典与机器学习算法(如逻辑回归、支持向量机、深度学习模型如LSTM)相结合的方法,对评论进行情感极性判断(积极、消极或中性)。最后,通过可视化技术展示分析结果,为音乐平台提供用户偏好洞察及个性化推荐策略。本研究不仅有助于提升音乐平台的用户体验,也为其他社交媒体平台的情感分析提供了参考。

关键字:文本挖掘,网易云音乐,情感分析,机器学习,深度学习,用户评论

Abstract

This paper focuses on conducting sentiment analysis of user comments on NetEase Cloud Music platform through text mining techniques, aiming to explore users' emotional tendencies towards different musical works. Initially, Python web crawling technology is employed to acquire song comment data from NetEase Cloud Music. Subsequently, text preprocessing steps, including text cleaning, word segmentation, and stopword removal, are performed to convert unstructured text into structured data. Then, a combination of sentiment lexicons and machine learning algorithms (such as logistic regression, support vector machines, and deep learning models like LSTM) is utilized to determine the sentiment polarity (positive, negative, or neutral) of the comments. Finally, visualization techniques are applied to present the analysis results, providing insights into user preferences and personalized recommendation strategies for music platforms. This study not only contributes to enhancing user experience on music platforms but also serves as a reference for sentiment analysis on other social media platforms.

Keywords: Text Mining, NetEase Cloud Music, Sentiment Analysis, Machine Learning, Deep Learning, User Comments

目录

基于文本挖掘的网易云音乐评论情感分析与研究

摘要

Abstract

第一章 引言

1.1 研究背景与意义

1.2 国内外研究现状

1.3 研究内容与方法

1.4 论文结构安排

第二章 相关理论基础

2.1 文本挖掘技术概述

2.2 情感分析技术

2.3 机器学习算法在情感分析中的应用

第三章 数据预处理与特征提取

3.1 数据来源与描述

3.2 数据清洗与去噪

3.3 文本分词与词频统计

3.4 特征选择与降维

第四章 情感分类模型构建

4.1 模型选择与设计

4.2 模型训练与优化

4.3 实验设计与实施

4.4 实验结果与分析

第五章 网易云音乐评论情感分析实证研究

5.1 网易云音乐平台简介

5.2 评论数据收集与处理

5.3 情感分类结果分析

5.4 实证研究结果讨论

第六章 结论与展望

6.1 研究结论

6.2 研究不足与局限

6.3 未来研究方向

参考文献

4、参考文献

  1. 龚凯丽, 张科伟. 基于文本挖掘的网易云音乐评论情感分析研究[J]. (具体期刊名称及出版日期缺失,假设为某计算机科学期刊,2020)

  2. 翟姗姗, 孙雪莹, 李进华. 基于社交体验的移动APP持续使用意愿研究——以网易云音乐为例[J]. 现代情报, 2019(2).

  3. 张如. 青少年群体在音乐社交中的自我展示——以网易云音乐用户QQ群为例[J]. 东南传播, 2018(8).

  4. 朱卫星, 徐伟光, 何红悦, 等. 文本数据主题挖掘与关联搜索研究[J]. 计算机科学, 2017(z2).

  5. 李广林. 音乐社交:趣缘群体的社区化生产与身份认同[J]. 视听界, 2018(2).

  6. 陈平. 基于文本挖掘的家用净水器用户评论分析[D]. (具体学位论文出版日期缺失,假设为2020年)

  7. 李林东, 张诚, 韩龙玫, 等. 基于点评文本的公园多尺度评价体系研究——以成都市公园为例[J]. 智能城市, 2021(2).

  8. 郭硕晔. 基于主题挖掘的音乐评论分析[D]. 华中师范大学, 2020.

  9. 姜霖, 等. 基于豆瓣电影评论的用户偏好分析[J]. (具体期刊名称及出版日期缺失,假设为某信息科学期刊)

  10. 阮泽楠. 基于用户情绪特征分析的在线评论研究[J]. (具体期刊名称及出版日期缺失,假设为某电子商务研究期刊)

请注意,以上参考文献中的具体期刊名称、出版日期等信息可能需要根据实际情况进行补充或调整。

部分成果展示

联系我们

如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~

### 基于Spring Boot的计算机毕业设计选题推荐 #### 一、在线教育平台开发 构建一个支持多种教学模式(直播课、录播课)、具备学生管理和课程评价功能的在线教育平台。此项目有助于深入理解Web应用架构以及前后端分离技术,同时掌握如何处理大规模并发访问。 ```java @RestController @RequestMapping("/api/course") public class CourseController { @Autowired private CourseService courseService; @GetMapping("/{id}") public ResponseEntity<Course> getCourseById(@PathVariable Long id){ Optional<Course> optionalCourse = courseService.findById(id); return optionalCourse.map(ResponseEntity::ok).orElseGet(() -> ResponseEntity.notFound().build()); } } ``` [^1] #### 二、企业级权限管理系统 创建一套适用于中小型企业的角色权限控制系统,通过RBAC模型实现细粒度的操作授权机制,并集成OAuth2协议完成单点登录(SSO),从而保障业务数据的安全性隐私保护。 ```yaml spring: security: oauth2: client: registration: github: clientId: your-github-client-id clientSecret: your-github-secret-key scope: read:user,user:email ``` [^2] #### 三、物联网(IoT)设备监控系统 利用MQTT协议连接各种传感器节点至云端服务器,在此基础上搭建实时监测仪表盘界面;并引入机器学习算法预测异常情况的发生概率,提前预警潜在风险事件。 ```bash mosquitto_sub -h localhost -t "sensor/temperature" ``` [^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值