(计算机毕设选题推荐)基于文本挖掘对京东平板电脑评论数据分析与研究

 摘要

随着互联网的飞速发展,电子商务平台积累了海量的用户评论数据。这些评论数据不仅反映了消费者对产品的直接反馈,还蕴含了丰富的市场信息和消费者行为模式。本文基于文本挖掘技术,对京东平台上平板电脑的评论数据进行了深入分析与研究。通过预处理、分词、主题提取和情感分类等步骤,本文旨在挖掘消费者对平板电脑的关注点、满意度及潜在改进方向。研究发现,平板电脑的性能、外观设计、续航能力和售后服务是消费者最为关注的几个方面,同时也指出了各品牌在产品性能上的优势和不足。基于这些发现,本文为平板电脑制造商提供了产品改进建议,也为潜在消费者提供了购买决策参考。

关键字: 文本挖掘,京东评论,平板电脑,情感分析,主题提取

Abstract

With the rapid development of the Internet, e-commerce platforms have accumulated massive amounts of user review data. These review data not only reflect consumers' direct feedback on products but also contain rich market information and consumer behavior patterns. This paper conducts an in-depth analysis and research on the review data of tablet computers on the JD.com platform based on text mining technology. Through preprocessing, word segmentation, topic extraction, and sentiment classification, this paper aims to explore consumers' concerns, satisfaction, and potential improvement directions for tablet computers. The study found that performance, appearance design, battery life, and after-sales service are the most concerned aspects for consumers. Meanwhile, it also points out the advantages and disadvantages of various brands in terms of product performance. Based on these findings, this paper provides product improvement suggestions for tablet computer manufacturers and purchase decision references for potential consumers.

Keywords: Text Mining, JD.com Reviews, Tablet Computers, Sentiment Analysis, Topic Extraction

目录

基于文本挖掘对京东平板电脑评论数据分析与研究

摘要

Abstract

第一章 绪论

1.1 研究背景与意义

1.2 国内外研究现状

第二章 Hadoop 技术概述

2.1 Hadoop 架构介绍

2.2 Hadoop 的分布式存储系统 HDFS

2.3 Hadoop 的分布式计算框架 MapReduce

第三章 数据收集与预处理

第四章 平板电脑评论数据分析

第五章 结果应用与建议

第六章 结论

参考文献

参考文献

  1. 崔静, 张海涛. 基于文本挖掘的商品评论情感分析研究[J]. 情报学报, 2023, 42(2): 204-212.
  2. 李明, 王晓东. 电商平台评论数据的文本挖掘分析——以某品牌面膜为例[J]. 管理评论, 2022, 34(11): 177-186.
  3. 王晓燕, 陈晓东. 基于LDA主题模型的电商评论主题提取与情感分析[J]. 数据分析与知识发现, 2021, 5(4): 85-93.
  4. 赵磊, 张敏. 文本挖掘在电商平台用户评论中的应用研究[J]. 电子商务, 2020, (6): 63-68.
  5. 陈宇, 刘佳. 基于语义网络的电商平台评论数据分析[J]. 现代情报, 2019, 39(7): 62-69.
  6. 刘明, 王小军. 文本挖掘技术在电商平台商品评价中的应用研究[J]. 情报理论与实践, 2018, 41(5): 114-119.
  7. 李欣, 杨春. 基于文本挖掘的笔记本电脑在线评论研究[J]. 计算机应用与软件, 2017, 34(8): 86-91.
  8. 王慧, 陈建新. 电商平台评论的情感分类与主题提取[J]. 计算机工程与应用, 2016, 52(10): 111-116.
  9. 蒋亚楠, 陈亮. 基于文本挖掘技术的电商产品评价研究[J]. 商业经济研究, 2015, (32): 66-68.
  10. 陈红霞, 王健. 文本挖掘在电商平台产品评价中的应用与实践[J]. 现代商贸工业, 2014, (22): 67-69.

部分成果展示

联系我们

如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值