(计算机毕设选题推荐)基于大数据技术的移动5G套餐潜客识别系统的设计与实现

摘要

本文设计并实现了一个基于大数据技术的移动5G套餐潜客识别系统。该系统利用大数据分析和机器学习技术,对海量用户数据进行深入挖掘,以识别出具有潜在升级至5G套餐意愿的客户群体。通过构建5G套餐潜客模型,系统能够根据客户套餐使用情况、行为特征、消费趋势等多维度信息进行综合分析,并结合当前5G资费产品库进行精准识别。该系统旨在提升运营商的营销效率,优化服务体验,助力5G套餐迁转发展战略的实施。

关键字: 大数据技术;5G套餐;潜客识别;机器学习;数据分析

Abstract

This paper designs and implements a mobile 5G package potential customer identification system based on big data technology. The system utilizes big data analytics and machine learning techniques to deeply mine massive user data to identify customer groups with potential willingness to upgrade to 5G packages. By constructing a 5G package potential customer model, the system comprehensively analyzes customer package usage, behavior characteristics, consumption trends, and other multi-dimensional information, and accurately identifies customers in conjunction with the current 5G tariff product library. The system aims to enhance the marketing efficiency of operators, optimize service experiences, and support the implementation of 5G package migration and development strategies.

Keywords: Big Data Technology; 5G Package; Potential Customer Identification; Machine Learning; Data Analysis

目录

基于大数据技术的移动5G套餐潜客识别系统的设计与实现

摘要

题目:基于大数据技术的移动5G套餐潜客识别系统的设计与实现

Abstract

第一章 引言

第二章 相关理论基础

第三章 系统需求分析与设计

第四章 系统实现

第五章 系统测试与优化

第六章 实验结果与分析

第七章 结论与展望

参考文献

4. 参考文献(中文)

  1. 戴怡文. 大数据技术在5G套餐潜客模型中的研究. 上海健康医学院, 2021.
  2. 彭木根. 专题导读. 电信科学, 2020, 01期.
  3. 王永森, 金超, 韩雷. 5G商用初期高校场景4G流量预测及建设方案研究. 电子技术应用, 2020, 08期.
  4. 马栋坤. 基于机器学习的电信行业用户的智能套餐匹配模型. 黑龙江大学, 2021.
  5. 吴博民. 基于数据挖掘的5G潜客识别的研究. 广西师范大学, 2022.
  6. 孙静蕾. 基于用户特征分析的接入网规划方法的设计与实现. 北京邮电大学, 2020.
  7. 杨冬. 基于数据挖掘的离网趋势客户套餐推荐研究. 浙江大学, 2007.
  8. 刘勇昌. 电信套餐评估系统的研究与设计. 北京邮电大学, 2007.
  9. 向卓元, 刘志聪. 基于RF算法的电视增值套餐推荐模型. 信息通信, 2019, 01期.
  10. 易红. 基于数据挖掘的手机上网用户偏好应用模型和套餐升舱模型研究. 电子科技大学, 2012.

部分成果展示

联系我们

如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值