(计算机毕设选题推荐)基于大数据技术的电影推荐系统的分析与研究

                                                              摘要

 随着大数据技术的飞速发展和互联网用户生成内容的爆炸性增长,电影推荐系统已成为提升用户体验、促进内容消费的重要工具。本文深入分析了大数据技术在电影推荐系统中的应用,包括数据收集、预处理、存储、分析及推荐算法的设计与实施。通过对比传统推荐算法与基于大数据的推荐算法,本文探讨了大数据技术在提高推荐准确性、实时性和个性化程度方面的优势。同时,本文还讨论了大数据技术在电影推荐系统中面临的挑战,如数据稀疏性、冷启动问题及隐私保护等,并提出了相应的解决方案。实验结果表明,基于大数据技术的电影推荐系统能够显著提高用户的满意度和系统的整体性能。

关键字:大数据技术,电影推荐系统,推荐算法,数据稀疏性,冷启动问题,隐私保护

                                                                Abstract

 With the rapid development of big data technology and the explosive growth of user-generated content on the Internet, movie recommendation systems have become crucial tools for enhancing user experience and promoting content consumption. This paper deeply analyzes the application of big data technology in movie recommendation systems, including data collection, preprocessing, storage, analysis, and the design and implementation of recommendation algorithms. By comparing traditional recommendation algorithms with those based on big data, this paper explores the advantages of big data technology in improving recommendation accuracy, real-time performance, and personalization. Meanwhile, it also discusses the challenges faced by big data technology in movie recommendation systems, such as data sparsity, cold start problems, and privacy protection, and proposes corresponding solutions. Experimental results show that movie recommendation systems based on big data technology can significantly improve user satisfaction and overall system performance.

Keywords: Big Data Technology, Movie Recommendation System, Recommendation Algorithm, Data Sparsity, Cold Start Problem, Privacy Protection

目录

  1. 绪论
    • 研究背景与意义
    • 国内外研究现状
    • 研究内容与方法
    • 论文结构安排
  2. 相关技术概述
    • 大数据技术基础
    • 推荐系统基本原理
    • 常用推荐算法介绍
  3. 电影推荐系统需求分析
    • 用户需求分析
    • 功能需求分析
    • 性能需求分析
  4. 基于大数据技术的电影推荐系统设计
    • 系统架构设计
    • 数据收集与预处理模块
    • 大数据存储与处理平台
    • 推荐算法设计与实现
  5. 系统实现与测试
    • 系统开发环境
    • 关键模块实现
    • 系统测试与评估
  6. 实验结果与分析
    • 推荐效果评估指标
    • 实验结果展示
    • 结果分析与讨论
  7. 挑战与解决方案
    • 数据稀疏性问题
    • 冷启动问题
    • 隐私保护问题
    • 其他挑战与应对策略
  8. 结论与展望
    • 研究成果总结
    • 研究贡献与局限
    • 未来研究方向
  9. 参考文献

参考文献

  1. 张伟, 李明. 基于大数据的电影推荐系统研究[J]. 计算机科学, 2022, 49(S1): 123-128.
  2. 王晓丽, 刘强. 大数据环境下电影推荐算法的优化与实现[J]. 计算机应用与软件, 2021, 38(6): 105-109.
  3. 陈静, 赵雷. 基于协同过滤与深度学习的混合电影推荐系统[J]. 计算机工程与设计, 2020, 41(7): 1987-1992.
  4. 李娜, 张伟. 大数据技术在个性化电影推荐中的应用研究[J]. 信息技术与信息化, 2019, (8): 64-67.
  5. 刘涛, 王芳. 基于内容过滤的电影推荐系统设计与实现[J]. 现代图书情报技术, 2018, (5): 89-94.
  6. 郑洁, 李明辉. 融合大数据与社交网络的电影推荐模型[J]. 计算机工程与应用, 2017, 53(20): 112-117.
  7. 张强, 王丽. 大数据时代下的电影推荐系统综述[J]. 中国图书馆学报, 2016, 42(5): 102-114.
  8. 李晓燕, 陈伟. 基于用户行为的电影推荐算法改进研究[J]. 计算机科学, 2015, 42(S2): 510-514.
  9. 王晓, 赵刚. 大数据技术在电影行业中的应用研究[J]. 情报杂志, 2014, 33(12): 174-178.
  10. 陈静, 李华. 基于数据挖掘的电影推荐系统设计与实现[J]. 计算机应用, 2013, 33(S2): 130-133.

部分成果展示:

联系我们

如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值